Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions.
View Article and Find Full Text PDFCerebral palsy (CP) is the most common motor disorder in children. Currently available neuroimaging techniques require complete body confinement and steadiness and thus are extremely difficult for pediatric patients. Here, we report the use and quantification of functional near infrared spectroscopy (fNIRS) to investigate the functional reorganization of the sensorimotor cortex in children with hemiparetic CP.
View Article and Find Full Text PDFWe demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.
View Article and Find Full Text PDF