Senescence plays a key role in various physiological and pathological processes. We reported that injury-induced transient senescence correlates with heart regeneration, yet the multi-omics profile and molecular underpinnings of regenerative senescence remain obscure. Using proteomics and single-cell RNA sequencing, here we report the regenerative senescence multi-omic signature in the adult mouse heart and establish its role in neonatal heart regeneration and agrin-mediated cardiac repair in adult mice.
View Article and Find Full Text PDFCardiomyocyte proliferation and dedifferentiation have fueled the field of regenerative cardiology in recent years, whereas the reverse process of redifferentiation remains largely unexplored. Redifferentiation is characterized by the restoration of function lost during dedifferentiation. Previously, we showed that ERBB2-mediated heart regeneration has these two distinct phases: transient dedifferentiation and redifferentiation.
View Article and Find Full Text PDFThe discovery of endogenous regenerative potential of the heart in zebrafish and neonatal mice has shifted the cardiac regenerative field towards the utilization of intrinsic regenerative mechanisms in the mammalian heart. The goal of these studies is to understand, and eventually apply, the neonatal regenerative mechanisms into adulthood. To facilitate these studies, the last two decades have seen advancements in the development of injury models in adult mice representative of the diversity of cardiac diseases.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2018
Uveal melanoma (UM) is the most common primary intraocular cancer and has a high incidence of metastasis, which lacks any effective treatment. Here, we present zebrafish models of UM, which are driven by melanocyte-specific expression of activating GNAQ or GNA11 alleles, GNAQ/11 , the predominant initiating mutations for human UM. When combined with mutant tp53, GNAQ/11 transgenics develop various melanocytic tumors, including UM, with near complete penetrance.
View Article and Find Full Text PDFCDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia.
View Article and Find Full Text PDFCentriole duplication is of crucial importance during both mitotic and male meiotic divisions, but it is currently not known whether this process is regulated differently during the two modes of division. In Caenorhabditis elegans, the kinase ZYG-1 plays an essential role in both mitotic and meiotic centriole duplication. We have found that the C-terminus of ZYG-1 is necessary and sufficient for targeting to centrosomes and is important for differentiating mitotic and meiotic centriole duplication.
View Article and Find Full Text PDFPlants have evolved a range of cellular responses to maintain developmental homeostasis and to survive over a range of temperatures. Here, we describe the in vivo and in vitro functions of BOBBER1 (BOB1), a NudC domain containing Arabidopsis (Arabidopsis thaliana) small heat shock protein. BOB1 is an essential gene required for the normal partitioning and patterning of the apical domain of the Arabidopsis embryo.
View Article and Find Full Text PDF