Publications by authors named "Dahae Song"

Enhancement of hydrolytic stability of metal-organic frameworks (MOFs) is a challenging issue in MOF chemistry because most MOFs have shown limitations in their applications under a humid environment. Meanwhile, inner sphere electron transfer has constituted one of the most intensively studied subjects in contemporary chemistry. In this report, we show, for the first time, a new conceptual coordinative reduction of Cu ion, which is realized in a paddlewheel MOF, HKUST-1, with a postsynthetic manner via inner sphere "single" electron transfer from hydroquinone (HQ) to Cu through its coordination bond.

View Article and Find Full Text PDF

Isolated one-dimensional (1-D) proton channels in a metal-organic framework, MOF-74, have been reasonably expected to show highly directional proton conductivity, although no evidence has been provided. As a result of dimensional anisotropy of the channels evenly aligned in the c-axis of MOF-74 single crystal, highly directional proton conductivity is demonstrated by using electrochemical impedance spectroscopy. In particular, single crystals treated with sulfuric acid or ammonium hydroxide displays a maximum ∼1200-fold-enhanced c-axis proton conductivity compared to its a-axis conductivity, demonstrating highly directional proton migration through the channels.

View Article and Find Full Text PDF

The activation of open coordination sites (OCSs) in metal-organic frameworks (MOFs), i.e., the removal of solvent molecules coordinated at the OCSs, is an essential step that is required prior to the use of MOFs in potential applications such as gas chemisorption, separation, and catalysis because OCSs often serve as key sites in these applications.

View Article and Find Full Text PDF