Publications by authors named "Dah-Jing Jwo"

Global Navigation Satellite Systems (GNSS) provide positioning, velocity, and time services for civilian applications. A critical step in the positioning process is the acquisition of visible satellites in the sky. Modern GNSS systems, such as Galileo-developed and maintained by the European Union-utilize a new modulation technique known as Binary Offset Carrier (BOC).

View Article and Find Full Text PDF

Multiple forms of interference and noise that impact the receiver's capacity to receive and interpret satellite signals, and consequently the preciseness of positioning and navigation, may be present during the processing of Global Positioning System (GPS) navigation. The non-Gaussian noise predominates in the signal owing to the fluctuating character of both natural and artificial electromagnetic interference, and the algorithm based on the minimum mean-square error (MMSE) criterion performs well when assuming Gaussian noise, but drops when assuming non-Gaussian noise. The maximum correntropy criteria (MCC) adaptive filtering technique efficiently reduces pulse noise and has adequate performance in heavy-tailed noise, which addresses the issue of filter performance caused by the presence of non-Gaussian or heavy-tailed unusual noise values in the localizing measurement noise.

View Article and Find Full Text PDF

In this paper, we provide geometric insights with visualization into the multivariate Gaussian distribution and its entropy and mutual information. In order to develop the multivariate Gaussian distribution with entropy and mutual information, several significant methodologies are presented through the discussion, supported by illustrations, both technically and statistically. The paper examines broad measurements of structure for the Gaussian distributions, which show that they can be described in terms of the information theory between the given covariance matrix and correlated random variables (in terms of relative entropy).

View Article and Find Full Text PDF

This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle.

View Article and Find Full Text PDF

In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance.

View Article and Find Full Text PDF

Accurate estimation of the motion and shape of a moving object is a challenging task due to great variety of noises present from sources such as electronic components and the influence of the external environment, etc. To alleviate the noise, the filtering/estimation approach can be used to reduce it in streaming video to obtain better estimation accuracy in feature points on the moving objects. To deal with the filtering problem in the appropriate nonlinear system, the extended Kalman filter (EKF), which neglects higher-order derivatives in the linearization process, has been very popular.

View Article and Find Full Text PDF