Unlabelled: Tubular epithelial injury represents an underestimated but important cause of renal dysfunction in patients with cholestasis and advanced liver disease, but the underlying mechanisms are unclear. To address the hypothesis that accumulation and excessive alternative urinary elimination of potentially toxic bile acids (BAs) may contribute to kidney injury in cholestasis, we established a mouse model for detailed in vivo time course as well as treatment studies. Three-day common bile duct ligation (CBDL) induced renal tubular epithelial injury predominantly at the level of aquaporin 2-positive collecting ducts with tubular epithelial and basement membrane defects.
View Article and Find Full Text PDFBackground & Aims: The quest for effective drugs to treat cholangiopathies led to the development of norUDCA previously shown to have potent choleretic effects and to heal cholangiopathy in Abcb4 knockout (Abcb4(-/-)) mice. Its mother compound UDCA had detrimental effects in common bile duct ligated (CBDL) mice, presumably related to its choleretic effects. norUDCA choleretic effects may therefore raise safety concerns when used in cholangiopathies with biliary obstruction.
View Article and Find Full Text PDFBackground: Rifampicin (RIFA) and ursodeoxycholic acid (UDCA) were found to stimulate different but complementary hepatobiliary detoxification pathways in gallstone patients.
Aim: To study whether single drug effects are sustained or even enhanced by combination of both drugs and whether possible effects are mediated by circulating fibroblast growth factor 19 (FGF19), which has recently been identified as a master regulator of bile acid biosynthesis.
Methods: 20 patients scheduled for laparoscopic cholecystectomy were randomized to a combination of UDCA (1 g/day during 3 weeks before surgery) and RIFA (600 mg/day during 1 week before surgery), or no treatment.
Unlabelled: Nonalcoholic fatty liver disease (NAFLD) is characterized by triglyceride (TG) accumulation and endoplasmic reticulum (ER) stress. Because fatty acids (FAs) may trigger ER stress, we hypothesized that the absence of adipose triglyceride lipase (ATGL/PNPLA2)-the main enzyme for intracellular lipolysis, releasing FAs, and closest homolog to adiponutrin (PNPLA3) recently implicated in the pathogenesis of NAFLD-protects against hepatic ER stress. Wild-type (WT) and ATGL knockout (KO) mice were challenged with tunicamycin (TM) to induce ER stress.
View Article and Find Full Text PDFUnlabelled: Chronic cholangiopathies have limited therapeutic options and represent an important indication for liver transplantation. The nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled receptor, TGR5, regulate bile acid (BA) homeostasis and inflammation. Therefore, we hypothesized that activation of FXR and/or TGR5 could ameliorate liver injury in Mdr2(-/-) (Abcb4(-/-)) mice, a model of chronic cholangiopathy.
View Article and Find Full Text PDFBackground & Aims: The liver controls central processes of lipid and bile acid homeostasis. We aimed to investigate whether alterations in lipid metabolism contribute to the pathogenesis of chronic cholestatic liver disease in mice.
Methods: We used microarray and metabolic profiling analyses to identify alterations in systemic and hepatic lipid metabolism in mice with disruption of the gene ATP-binding cassette sub-family B member 4 (Abcb4(-/-) mice), a model of inflammation-induced cholestatic liver injury, fibrosis, and cancer.
The nuclear bile acid receptor/farnesoid X receptor (FXR; NR1H4) is involved in bile acid homeostasis, cell proliferation and apoptosis and has been linked to intestinal carcinogenesis in mice. Aim of this study was to analyze FXR expression in human normal intestinal mucosa and colon carcinoma. We achieved systematic mapping of FXR expression of human intestinal mucosa and analysis of 75 human colon carcinomas using FXR immunohistochemistry on formalin-fixed, paraffin-embedded tissue.
View Article and Find Full Text PDFProinflammatory and profibrotic cytokines such as osteopontin (OPN) and tumor necrosis factor-alpha receptor-1 (TNFR(1)) may be critically involved in the pathogenesis of cholangiopathies and biliary fibrosis. We therefore aimed to determine the role of genetic loss of either OPN or TNFR(1) in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice as a model of xenobiotic-induced sclerosing cholangitis with biliary-type liver fibrosis using respective knock-out mice. OPN and TNFR(1) knock-out mice were fed a 0.
View Article and Find Full Text PDFBackground And Aim: Chronic cholangiopathies have limited therapeutic options and represent an important indication for liver transplantation. Curcumin, the yellow pigment of the spice turmeric, has pleiotropic actions and attenuates hepatic damage in animal models of chemically-induced liver injury. Whether curcumin has beneficial effects in cholangiopathies is unknown.
View Article and Find Full Text PDFObjectives: The murine model of Schistosoma mansoni infection is characterized by strong fibrosis and little hepatocellular injury. The objective of this study was to evaluate the potential link between hepatic schistosomiasis and bile duct injury in relation to the expression of profibrotic cytokines and fibrosis-related genes.
Methods: Hepatic schistosomiasis was induced via percutaneous infection of mice with 50 S.
Unlabelled: The intermediate filament cytoskeleton of hepatocytes is composed of keratin (K) 8 and K18 and has important mechanical and nonmechanical functions. However, the potential role of the K8/K18 network for proper membrane targeting of hepatocellular adenosine triphosphate-binding cassette transporters and bile formation is unknown. We therefore designed a comparative study in K8 and K18 knockout mice and respective wild-type controls to test the hypothesis that intermediate filaments of hepatocytes play a role in normal bile formation.
View Article and Find Full Text PDFBackground And Aims: The pathogenetic link between ulcerative colitis and sclerosing cholangitis (SC) is unclear. We hypothesized that colitis induces changes in bile composition via inflammation-induced reduction of hepatobiliary transporter gene expression, ultimately resulting in cholestasis and bile duct injury.
Methods: Alterations in transporter expression and bile secretion in acute dextran sulphate sodium (DSS)-induced colitis were compared with lipopolysaccharide (LPS)-treated mice serving as positive control.
Unlabelled: 24-norursodeoxycholic acid (norUDCA), a side chain-modified ursodeoxycholic acid derivative, has dramatic therapeutic effects in experimental cholestasis and may be a promising agent for the treatment of cholestatic liver diseases. We aimed to better understand the physiologic and therapeutic properties of norUDCA and to test if they are related to its side chain length and/or relative resistance to amidation. For this purpose, Mdr2(-/-) mice, a model for sclerosing cholangitis, received either a standard diet or a norUDCA-, tauro norursodeoxycholic acid (tauro- norUDCA)-, or di norursodeoxycholic acid (di norUDCA)-enriched diet.
View Article and Find Full Text PDFBackground/aims: Multidrug resistance protein 2 (Abcb4) gene knockout mice (Mdr2(-/-)) lack phosphatidylcholine (PC) excretion into bile and spontaneously develop sclerosing cholangitis, biliary fibrosis and hepatocellular carcinomas. We therefore aimed to test whether formation and hepatic retention of abnormal PC metabolites contribute to the pathogenesis of liver injury in Mdr2(-/-) mice.
Methods: Mdr2(-/-) mice were either fed a diet supplemented with soybean lecithin 2.
Background: Bile acid synthesis, transport and metabolism are markedly altered in experimental cholestasis. Whether such coordinated regulation exists in human cholestatic diseases is unclear. We therefore investigated expression of genes for bile acid synthesis, detoxification and alternative basolateral export and regulatory nuclear factors in primary biliary cirrhosis (PBC).
View Article and Find Full Text PDFLiver injury in intercellular adhesion molecule 1 knockout (ICAM(-/-)) and Fas receptor-deficient (lpr) mice is markedly reduced after common bile duct ligation (CBDL) due to significantly reduced inflammation and oxidative stress. Liver injury in CBDL rodents is counteracted by adaptive hepatobiliary transporter induction. Since hepatobiliary transporter expression in obstructive cholestasis may be regulated not only by accumulating bile acids but also by inflammatory mediators and oxidative stress, we hypothesized that differences in the inflammatory response may affect hepatobiliary transporter expression in CBDL, which would contribute to reduced liver injury.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2006
The bile acid receptor farnesoid X receptor (FXR) is a key regulator of hepatic defense mechanisms against bile acids. A comprehensive study addressing the role of FXR in the coordinated regulation of adaptive mechanisms including biosynthesis, metabolism, and alternative export together with their functional significance is lacking. We therefore fed FXR knockout (FXR(-/-)) mice with cholic acid (CA) and ursodeoxycholic acid (UDCA).
View Article and Find Full Text PDFFarnesoid X receptor knockout (Fxr(-/-)) mice cannot upregulate the bile salt export pump in bile acid loading or cholestatic conditions. To investigate whether Fxr(-/-) mice differ in bile acid detoxification compared with wild-type mice, we performed a comprehensive analysis of bile acids extracted from liver, bile, serum, and urine of naive and common bile duct-ligated wild-type and Fxr(-/-) mice using electrospray and gas chromatography mass spectrometry. In addition, hepatic and renal gene expression levels of Cyp2b10 and Cyp3a11, and protein expression levels of putative renal bile acid-transporting proteins, were investigated.
View Article and Find Full Text PDFBackground & Aims: Rifampicin (RIFA) and ursodeoxycholic acid (UDCA) improve symptoms and biochemical markers of liver injury in cholestatic liver diseases by largely unknown mechanisms. We aimed to study the molecular mechanisms of action of these drugs in humans.
Methods: Thirty otherwise healthy gallstone patients scheduled for cholestectomy were randomized to RIFA (600 mg/day for 1 week) or UDCA (1 g/day for 3 weeks) or no medication before surgery.
Am J Physiol Gastrointest Liver Physiol
November 2005
Expression of the main hepatic bile acid uptake system, the Na+-taurocholate cotransporter (Ntcp), is downregulated during cholestasis. Bile acid-induced, farnesoid X receptor (FXR)-mediated induction of the nuclear repressor short heterodimer partner (SHP) has been proposed as a key mechanism reducing Ntcp expression. However, the role of FXR and SHP or other nuclear receptors and hepatocyte-enriched transcription factors in mediating Ntcp repression in obstructive cholestasis is unclear.
View Article and Find Full Text PDFBackground/aims: Treatment of hepatocellular carcinoma (HCC) is hampered by resistance to chemotherapy, which might be mediated by multidrug resistance P-glycoproteins (MDR P-gps) and MDR-associated proteins (MRPs). The effectiveness of cytostatics could be further impeded by reduced hepatocellular drug uptake into HCCs. Therefore, we aimed to determine P-gp, MRP and organic anion transporting protein OATP2 (SLC21A6) expression in HCC.
View Article and Find Full Text PDFBackground/aims: Adaptive changes in transporter expression in liver and kidney provide alternative excretory pathways for biliary constituents during cholestasis and may thus attenuate liver injury. Whether adaptive changes in ATP-binding cassette (ABC) transporter expression are stimulated by bile acids and their nuclear receptor FXR is unknown.
Methods: Hepatic, renal and intestinal ABC transporter expression was compared in cholic acid (CA)- and ursodeoxycholic acid (UDCA)-fed wild-type (FXR(+/+)) and FXR knock-out mice (FXR(-/-)).
Background & Aims: Cholestasis induces changes in hepatic adenosine triphosphate-binding cassette (ABC) transporter expression. We aimed to investigate the role of the nuclear bile acid receptor (farnesoid X receptor [FXR]) in mediating changes in ABC transporter expression and in determining liver injury.
Methods: Hepatic ABC transporter (multidrug resistance-associated proteins [Mrp] 2-4 and bile salt export pump [Bsep]) expression and localization were studied in common bile duct-ligated (CBDL) FXR knockout (FXR(-/-)), wild-type (FXR(+/+)), and sham-operated mice.
Background/aims: Information about alterations of hepatobiliary transporter expression in primary biliary cirrhosis (PBC) could provide important insights into the pathogenesis of cholestasis. This study aimed to determine the expression of hepatobiliary transport systems for bile salts (Na(+)/taurocholate cotransporter, NTCP; bile salt export pump, BSEP), organic anions (organic anion transporting protein, OATP2; canalicular conjugate export pump, MRP2; basolateral MRP homologue, MRP3), organic cations (canalicular multidrug export pump, MDR1), and phospholipids (canalicular phospholipid flippase MDR3) in livers from patients with advanced stages of PBC.
Methods: Transporter mRNA and protein levels were assessed by reverse transcription polymerase chain reaction and Western blot analysis.
Am J Physiol Gastrointest Liver Physiol
January 2002
Cholestasis is associated with retention of bile acids and reduced expression of the Na(+)/taurocholate cotransporter (Ntcp), the major hepatocellular bile acid uptake system. This study aimed to determine whether downregulation of Ntcp in obstructive cholestasis 1) is a consequence of bile acid retention and 2) is mediated by induction of the transcriptional repressor short heterodimer partner 1 (SHP-1). To study the time course for the changes in serum bile acid levels as well as SHP-1 and Ntcp steady-state mRNA levels, mice were subjected to common bile duct ligation (CBDL) for 3, 6, 12, 24, 72, and 168 h and compared with sham-operated controls.
View Article and Find Full Text PDF