Tau seed amplification assays (SAAs) directly measure the seeding activity of tau and would therefore be ideal biomarkers for clinical trials targeting seeding-competent tau in Alzheimer's disease (AD). However, the precise relationship between tau seeding measured by SAA and the levels of pathological forms of tau in the AD brain remains unknown. We developed a new tau SAA based on full-length 0N3R tau with sensitivity in the low fg/ml range and used it to characterize 103 brain samples from three independent cohorts.
View Article and Find Full Text PDFTau protein fibrillization is implicated in the pathogenesis of several neurodegenerative diseases collectively known as Tauopathies. For decades, investigating Tau fibrillization in vitro has required the addition of polyanions or other co-factors to induce its misfolding and aggregation, with heparin being the most commonly used. However, heparin-induced Tau fibrils exhibit high morphological heterogeneity and a striking structural divergence from Tau fibrils isolated from Tauopathies patients' brains at ultra- and macro-structural levels.
View Article and Find Full Text PDFIntraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2.
View Article and Find Full Text PDFIn Alzheimer disease, Tau pathology is thought to propagate from cell to cell throughout interconnected brain areas. However, the forms of Tau released into the brain interstitial fluid (ISF) in vivo during the development of Tauopathy and their pathological relevance remain unclear. Combining in vivo microdialysis and biochemical analysis, we find that in Tau transgenic mice, human Tau (hTau) present in brain ISF is truncated and comprises at least 10 distinct fragments spanning the entire Tau protein.
View Article and Find Full Text PDFBackground: Human tauopathies including Alzheimer's disease (AD) are characterized by alterations in the post-translational modification (PTM) pattern of Tau, which parallel the formation of insoluble Tau aggregates, neuronal dysfunction and degeneration. While PTMs on aggregated Tau have been studied in detail, much less is known about the modification patterns of soluble Tau. Furthermore, PTMs other than phosphorylation have only come into focus recently and are still understudied.
View Article and Find Full Text PDFHuntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of a polyglutamine repeat in the huntingtin (HTT) protein. Aberrant activation of caspase-6 and cleavage of mutant HTT generating the toxic N-terminal 586 HTT fragment are important steps in the pathogenesis of HD. Similarly, alterations in the insulin-like growth factor 1 (IGF-1) signaling pathway have been implicated in the disease as a result of decreased plasma IGF-1 levels in HD patients.
View Article and Find Full Text PDFTau is a microtubule-binding protein that can receive various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Hyperphosphorylation of tau is linked to its aggregation and the formation of neurofibrillary tangles (NFTs), which are a hallmark of Alzheimer's disease (AD). While more than 70 phosphorylation sites have been detected previously on NFT tau, studies of oligomeric and detergent-soluble tau in human brains during the early stages of AD are lacking.
View Article and Find Full Text PDFAberrant activation of caspase-6 (C6) in the absence of other hallmarks of apoptosis has been demonstrated in cells and tissues from patients with Huntington disease (HD) and animal models. C6 activity correlates with disease progression in patients with HD and the cleavage of mutant huntingtin (mHTT) protein is thought to strongly contribute to disease pathogenesis. Here we show that the mHTT fragment generated by C6 cleavage interacts with the zymogen form of the enzyme, stabilizing a conformation that contains an active site and is prone to full activation.
View Article and Find Full Text PDFTau cleavage by different proteolytic enzymes generates short, aggregation-prone fragments that have been implicated in the pathogenesis of Alzheimer's disease (AD). Asparagine endopeptidase (AEP) activity in particular has been associated with tau dysfunction and aggregation, and the activity of the protease is increased in both aging and AD. Using a mass spectrometry approach, we identified a novel tau cleavage site at N167 and confirmed its processing by AEP.
View Article and Find Full Text PDFTraditionally, the family of caspases has been subcategorised according to their respective main roles in mediating apoptosis or inflammation. However, recent studies have revealed that caspases participate in diverse cellular functions beyond their canonical roles. Caspase-6 (C6) is one such protease known for its role as a pro-apoptotic executioner caspase and its aberrant activity in several neurodegenerative diseases.
View Article and Find Full Text PDFHuntington disease (HD) is caused by the expression of mutant huntingtin (mHTT) bearing a polyglutamine expansion. In HD, mHTT accumulation is accompanied by a dysfunction in basal autophagy, which manifests as specific defects in cargo loading during selective autophagy. Here we show that the expression of mHTT resistant to proteolysis at the caspase cleavage site D586 (C6R mHTT) increases autophagy, which may be due to its increased binding to the autophagy adapter p62.
View Article and Find Full Text PDFBackground: Tau is a microtubule-binding protein, which is subject to various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Aberrant PTMs such as hyperphosphorylation result in tau aggregation and the formation of neurofibrillary tangles, which are a hallmark of Alzheimer's disease (AD). In order to study the importance of PTMs on tau function, antibodies raised against specific modification sites are widely used.
View Article and Find Full Text PDFOxidative stress is a prominent feature of Huntington disease (HD), and we have shown previously that reduced levels of hace1 (HECT domain and Ankyrin repeat containing E3 ubiquitin protein ligase 1) in patient striatum may contribute to the pathogenesis of HD. Hace1 promotes the stability of Nrf2 and thus plays an important role in antioxidant response mechanisms, which are dysfunctional in HD. Moreover, hace1 overexpression mitigates mutant huntingtin (mHTT)-induced oxidative stress in vitro through promotion of the Nrf2 antioxidant response.
View Article and Find Full Text PDFCaspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased CASP6 activity has been implicated. The key to finding approaches to decrease CASP6 activity is a deeper understanding of the mechanisms regulating CASP6 activation.
View Article and Find Full Text PDFCaspase-6 (CASP6) has emerged as an important player in Huntington disease (HD), Alzheimer disease (AD) and cerebral ischemia, where it is activated early in the disease process. CASP6 also plays a key role in axonal degeneration, further underscoring the importance of this protease in neurodegenerative pathways. As a protein's function is modulated by its protein-protein interactions, we performed a high-throughput yeast-2-hybrid (Y2H) screen against ∼17,000 human proteins to gain further insight into the function of CASP6.
View Article and Find Full Text PDFHuntington Disease (HD) is a progressive neurodegenerative disease caused by an elongated CAG repeat in the huntingtin (HTT) gene that encodes a polyglutamine tract in the HTT protein. Proteolysis of the mutant HTT protein (mHTT) has been detected in human and murine HD brains and is implicated in the pathogenesis of HD. Of particular importance is the site at amino acid (aa) 586 that contains a caspase-6 (Casp6) recognition motif.
View Article and Find Full Text PDFAutophagy is an important biological process that is essential for the removal of damaged organelles and toxic or aggregated proteins by delivering them to the lysosome for degradation. Consequently, autophagy has become a primary target for the treatment of neurodegenerative diseases that involve aggregating proteins. In Huntington disease (HD), an expansion of the polyglutamine (polyQ) tract in the N-terminus of the huntingtin (HTT) protein leads to protein aggregation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
Activation of caspase-6 in the striatum of both presymptomatic and affected persons with Huntington's disease (HD) is an early event in the disease pathogenesis. However, little is known about the role of caspase-6 outside the central nervous system (CNS) and whether caspase activation might play a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD.
View Article and Find Full Text PDFHuntington disease (HD), a neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene, remains without a treatment to modify the course of the illness. Lithium, a drug widely used for the treatment of bipolar disorder, has been shown to exert neuroprotective effects in a number of models of neurological disease but may have various toxic effects at conventional therapeutic doses. We examined whether NP03, a novel low-dose lithium microemulsion, would improve the disease phenotypes in the YAC128 mouse model of HD.
View Article and Find Full Text PDF