The symbiotic system Azolla filiculoides-Trichormus azollae was exposed for ten days to environmentally relevant concentrations (i.e. 0.
View Article and Find Full Text PDFBackground: Dietary supplements based on tannin extracts or essential oil compounds (EOC) have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry. A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation. Among these, Q-2 (named after quebracho extract and EOC blend 2, composed of carvacrol, thymol, and eugenol) and C-10 (chestnut extract and EOC blend 10, consisting of oregano and thyme essential oils and limonene) have been investigated in detail in the present study with the semi-continuous rumen simulation technique (Rusitec) in three independent runs.
View Article and Find Full Text PDFThe use of alternative feed ingredients from the Agro-industry could be an efficient tool to improve the sustainability of dairy cow production. Since the richness in polyphenols, olive oil pomace (OOP), produced during olive oil milling, seems a promising by-product to ameliorate milk's nutritional value. The aim of this study was to test the use of OOP produced by means of a new technology (biphasic with stone deprivation) in dairy cow feeding strategy to evaluate the effect on animal performances, rumen microbiota, biohydrogenation processes and milk quality by a multidisciplinary approach.
View Article and Find Full Text PDFThe rumen is characterised by a complex microbial ecosystem, which is particularly active in lipid metabolism. Several studies demonstrated a role of diet and breed on bacterial community profile, with the effect on metabolic pathways. Despite the knowledge achieved on metabolism and the bacterial profile, little is known about the relationship between individual bacteria and metabolic pathways.
View Article and Find Full Text PDFPink discoloration defect can cause economic losses for cheese producers due to the impossibility to sell the defected cheese, but few knowledge is currently available on the causes of this defect. To gain more insight on the causes that lead to the formation of pink discoloration in Pecorino Toscano cheese with the Protected Designation of Origin (PDO) status, the bacterial community in defected and not defected cheese was characterized by high-throughput sequencing of bacterial 16S rRNA gene. The bacterial community in the defected cheese significantly differed compared to the control.
View Article and Find Full Text PDFFor decades antibiotics have been used in poultry rearing to support high levels of production. Nevertheless, several problems have arisen because of the misuse of antibiotics (i.e.
View Article and Find Full Text PDFThe use of rustic cattle is desirable to face challenges brought on by climate change. Maremmana (MA) and Aubrac (AU) are rustic cattle breeds that can be successfully used for sustainable production. In this study, correlations between two rearing systems (feedlot and grazing) and the rumen microbiota, the lipid composition of rumen liquor (RL), and the growth performance of MA and AU steers were investigated.
View Article and Find Full Text PDFThe fungal microbiota usually growing on the cheese surface during ripening processes promote rind formation and the development of organoleptic characteristics, imparting positive sensory attributes to cheeses. As cheese contamination may also occur by undesirable molds, specific actions for preventing their growth are usually realized in dairy industries by using the antibiotic natamycin, which may represent a risk factor for human health and environmental sustainability. Here, agroindustrial by-products with natural antimicrobial properties, i.
View Article and Find Full Text PDFTwo by-products containing phenols and polysaccharides, a "pâté" (OP) from the extra virgin olive oil milling process and a decoction of pomegranate mesocarp (PM), were investigated for their effects on human microbiota using the SHIME system. The ability of these products to modulate the microbial community was studied simulating a daily intake for nine days. Microbial functionality, investigated in terms of short chain fatty acids (SCFA) and NH, was stable during the treatment.
View Article and Find Full Text PDFChestnut tannins (CT) and saturated short medium chain fatty acids (SMCFA) are valid alternatives to contrast the growth of pathogens in poultry rearing, representing a valid alternative to antibiotics. However, the effect of their blends has never been tested. Two blends of CT extract and Sn1-monoglycerides of SMCFA (SN1) were tested in vitro against the proliferation of , , , .
View Article and Find Full Text PDFThe addition of polyphenol extracts in ruminant diets is an effective strategy to modulate rumen microflora. The aim of this in vitro trial was to study the effects of chestnut tannin extract (CHT), vescalagin (VES) and gallic acid (GAL) on dietary fibre degradability and on the dimethyl acetals (DMA) profile and microbial community composition of rumen liquor. Four diets (basal diet; basal diet plus CHT; basal diet plus VES; basal diet plus GAL) were fermented for 24 h using ewe rumen liquor.
View Article and Find Full Text PDFMicrobial electrochemical technologies (MET) are increasingly being considered for in situ remediation of contaminated groundwater. However, their application potential for the simultaneous treatment of complex mixtures of organic and inorganic contaminants, has been only marginally explored. Here we have analyzed the performance of the 'bioelectric well', a previously developed bioelectrochemical reactor configuration, in the treatment of benzene, toluene, ethyl-benzene and xylenes (BTEX) mixtures.
View Article and Find Full Text PDFThe interest of the scientific community in the effects of plant polyphenols on animal nutrition is increasing. These compounds, in fact, are ubiquitous in the plant kingdom, especially in some spontaneous plants exploited as feeding resources alternative to cultivated crops and in several agro-industry by-products. Polyphenols interact with rumen microbiota, affecting carbohydrate fermentation, protein degradation, and lipid metabolism.
View Article and Find Full Text PDFUnlabelled: HIV continues to be an important public health problem. The web, social media and new mobile technologies are gaining considerable potential in overcoming the stigma in order to promote continuity of care, the possibility to stay in contact with one's doctor and with the peer community, offering an alternative to traditional social structures. The purpose of this survey it was to investigate the opinions and behavior of people with HIV regarding the use of these technologies.
View Article and Find Full Text PDFSulfate reducing microorganisms are typically involved in hydrocarbon biodegradation in the sea sediment, with their metabolism resulting in the by-production of toxic sulfide. In this context, it is of utmost importance identifying the optimal value for anodic potential which ensures efficient toxic sulfide removal. Along this line, in this study the (bio)electrochemical removal of sulfide was tested at anodic potentials of -205 mV, +195 mV and +300 mV (vs Ag/AgCl), also in the presence of a pure culture of the sulfur-oxidizing bacterium Desulfobulbus propionicus.
View Article and Find Full Text PDFBioelectrochemical remediation of hydrocarbons is a technology that exploits the ability of specific microorganisms to use as electron acceptor an electrode, thus potentially lowering the operational costs related to classical bioremediation. Several well-characterized hydrocarbonoclastic strains might be electroactive, thus their biodegradation performances in Bioelectrochemical Systems should be studied. Cupriavidus metallidurans CH34 is a model metal-resistant strain whose capacity to degrade benzene aerobically has recently been described.
View Article and Find Full Text PDFGroundwater contamination by petroleum hydrocarbons (PHs) is a widespread problem which poses serious environmental and health concerns. Recently, microbial electrochemical technologies (MET) have attracted considerable attention for remediation applications, having the potential to overcome some of the limiting factors of conventional in situ bioremediation systems. So far, field-scale application of MET has been largely hindered by the limited availability of scalable system configurations.
View Article and Find Full Text PDFAnnually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches.
View Article and Find Full Text PDFWidespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2016
Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode).
View Article and Find Full Text PDFBTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene.
View Article and Find Full Text PDFWe report the 3.7-Mb draft genome of Acinetobacter oleivorans strain PF1, a hydrocarbonoclastic Gram-negative bacterium in the class Gammaproteobacteria, isolated from poplar trees growing on a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain PF1 is a potent plant-growth promoter, useful for diesel fuel phytoremediation applications.
View Article and Find Full Text PDFMethyl tert-butyl ether (MTBE) is used at significant percentages as an additive of unleaded gasoline. The physical-chemical properties of the substance (water solubility, soil organic carbon-water partition coefficient) cause high mobility and high concentrations in groundwater. Laboratory scale batch and column tests and mathematical modeling were performed to study the feasibility of a biobarrier (BB), that is an in situ permeable biological barrier with or without inoculation, for the remediation of MTBE and other gasoline-derived pollutants (benzene, toluene, ethylbenzene, o-xylene and m+p-xylenes, BTEXs) polluted groundwater and to estimate kinetic constants.
View Article and Find Full Text PDF