Ether-linked surfactants are widely used in formulations such as liquid soaps, but despite their ubiquity, it is unclear how -ethylene glycol linkers in surfactants, such as sodium lauryl -(ethylene glycol) sulfate (SLEnS), influence micellar packing in the presence of NaCl. In the present work, we probe the structure and hydration of ether linkers in micelles comprising monodisperse SLEnS surfactants using contrast-variation small-angle neutron scattering (CV-SANS) and small-angle X-ray scattering (SAXS). Using SAXS, changes in micellar structure were observed for SLEnS ( = 1, 2, or 3) arising from the extent of ethoxylation.
View Article and Find Full Text PDFSurfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates.
View Article and Find Full Text PDFTotal internal reflection microscopy (TIRM) has become a crucial technique for understanding the surface interactions and dynamics of Brownian colloidal particles near a surface. However, for select colloidal systems, experimental limitations associated with TIRM can occlude exploration of nano- and submicrometer colloids dispersed in complex or structured fluids. It should be possible to use Brownian dynamic simulations to quantify, explore, or circumvent these limitations to extend the TIRM technique further.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2024
Hypothesis: Interactions across incredibly thin layers of fluids, known as thin films, underpin many important processes involving colloids, such as wetting-dewetting phenomena. Often in these systems, thin films are composed of complex fluids that contain dispersed components, such as spherical micelles, giving rise to oscillatory structural forces due to preferential layering under confinement. Modelling of thin film dynamics involving Derjaguin-Landau-Verwey-Overbeek (DLVO) type forces has been widely reported using the Stokes-Reynolds-Young-Laplace (SRYL) model, and we hypothesize that this theory can be extended to a concentrated micellar system by including an oscillatory structural force term in the disjoining pressure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Size, shape, and chemical properties of nanoparticles are powerful tools to modulate the optical and physicochemical properties of a particle suspension. Despite having many methods to synthesize anisotropic nanoparticles, often there are challenges in terms of controlling the polydispersity, shape, size, or composition of anisotropic nanoparticles. This work has been inspired by the potential for developing a unique pathway to make different shaped monodispersed anisotropic nano- and microparticles with large flexibility in material choice.
View Article and Find Full Text PDFSelective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with -succinylimidazole, achieving regioselective surface modification of C6-OH, which can be reverted using mild post-treatments.
View Article and Find Full Text PDFHypothesis: Interfacial rheology provides insight into the mechanical properties of adsorption layers on liquid-liquid interfaces, which mediates the stability of emulsion droplets. The use of capsule compression at the scale of an emulsion droplet to probe the interfacial rheology may open up the possibility of testing the interfacial rheological properties of droplets with complex histories and extremely small volumes found in many applications.
Experiments: The time dependent interfacial rheological behavior of β-lactoglobulin adsorption layers on an oil/water interface in the native and crosslinked state was extracted using small oscillatory indentation with atomic force microscopy (AFM).
ACS Appl Mater Interfaces
October 2020
The time-dependent behavior of surface-active adsorption layers at the oil/water interface can dictate emulsion behavior at both the micro- and macroscale. In addition, self-healing behavior of the adsorption layer may benefit emulsion stability subject to large deformation under processing or during final application. We explore the behavior of chitosan, a known hydrophilic emulsifier, which forms nanoparticle aggregates when the concentration of acetate buffer exceeds 0.
View Article and Find Full Text PDFHydrogels can be formed in a number of different geometries depending upon desired function. However, due to the lack of appropriate models required to interpret experimental data, it remains unclear whether hydrogel microparticles have the same poroelastic properties as hydrogel films made with the same components. We perform numerical simulations to determine the universal force relaxation of a poroelastic hydrogel particle undergoing constant compression by a spherical probe, allowing analysis of experimental measurements of hydrogel particle material properties for the first time.
View Article and Find Full Text PDFHypothesis: The role of interfacial coatings in gas transport dynamics in foam coarsening is often difficult to quantify. The complexity of foam coarsening measurements or gas transport measurements between bubbles requires assumptions about the liquid thin film thickness profile in order to explore the effects of interfacial coatings on gas transport. It should be possible to independently quantify the effects from changes in film thickness and interfacial permeability by using both atomic force microscopy and optical microscopy to obtain time snapshots of this dynamic process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
The adhesion force and contact angle of gold-capped silica Janus particles and plain silica particles at an air-water interface are studied via colloidal atomic force microscopy. Particles are attached to cantilevers at various orientations, and wetting properties of the gold surface are varied through modification with dodecanethiol. Thiol modification increases the hydrophobicity of the gold surface, thereby increasing the difference between the contact angles of the gold hemisphere and the silica hemisphere and, thus, increasing the degree of amphiphilicity of the Janus particle.
View Article and Find Full Text PDFThe mechanical properties of polyacrylamide (PA) and polydimethylsiloxane (PDMS) microparticle populations have been measured using microaspiration, a recently developed experimental technique. Microaspiration is an augmented version of micropipette aspiration, in which optical microscopy data are obtained as individual soft particles pass through the tip of a micropipette. During microaspiration, the ion current passing through the pipette tip is also measured, and the synchronised optical and current data streams are used to study and quantify mechanical properties.
View Article and Find Full Text PDFHypothesis: Linking atomic force microscopy and microfluidics opens up the possibility of probing adhesive interactions between drops in a high-throughput context. A microfluidic device designed to form, and subsequently break-up, chains of drops, where the drop break-up is sensitive to the underlying surface forces between drops, not hydrodynamic drainage forces, would play a key role in developing this link.
Experiments: Both techniques have been used to quantify the forces between oil drops in the presence of complexes formed with anionic surfactant, sodium dodecylsulphate, and neutral, water soluble polymer, poly(vinylpyrrolidone).
ACS Appl Mater Interfaces
November 2018
Intermediate filaments (IFs) are known for their extensibility, flexibility, toughness, and their ability to hydrate. Using keratin-like IFs obtained from slime fibers from the invertebrate Atlantic hagfish ( Myxine glutinosa), films were produced by drop-casting and coagulation on the surface of a MgCl buffer. Drop-casting produced self-supporting, smooth, and dense films rich in β-sheets (61%), whereas coagulation formed thin, porous films with a nanorough surface and a lower β-sheet content (51%).
View Article and Find Full Text PDFAtomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane. The oil filled microcapsules were prepared using a one pot synthesis via ultrasonic emulsification of tetradecane and crosslinking of the chitosan shell in aqueous solutions of acetic acid. The concentration of acetic acid in aqueous solutions of chitosan was varied from 0.
View Article and Find Full Text PDFThis study reports the synthesis of tetradecane-filled chitosan microcapsules in acetic acid aqueous solutions using high intensity ultrasound at 20 kHz. The size, size distribution, and stability of microcapsules were tuned by varying the concentration of acetic acid from 0.2% to 25% v/v.
View Article and Find Full Text PDFThe dynamic collision of emulsified water drops in the presence of non-ionic surfactants plays a crucial role in many practical applications. Interaction force between water drops coated with non-ionic food grade surfactants is expected to exhibit rich dynamic behavior that is not yet explored. The collision forces between immobilized water drops in canola oil in the presence of a well-known food grade surfactant polyglycerol polyricinoleate (PGPR) are measured at concentrations well below typically used to form stable emulsions.
View Article and Find Full Text PDFThin-film composite poly(amide) (PA) membranes have greatly diversified water supplies and food products. However, users would benefit from a control of the electrostatic interactions between the liquid and the net surface charge interface in order to benefit wider application. The ionic selectivity of the 100 nm PA semi-permeable layer is significantly affected by the pH of the solution.
View Article and Find Full Text PDFThe interaction forces between colliding tetradecane drops were measured in the presence of the nonionic surfactant pentaethylene glycol monododecyl ether (CE). The force behavior was measured in the range of premicellar compositions of the nonionic surfactant in various salt solutions and was consistent with the presence of a surface charge even though the surfactant was nonionic in nature. The surface potential of oil drops was found to decrease with an increase in CE concentration.
View Article and Find Full Text PDFNano-porous metallic matrixes (NMMs) offer superior surface to volume ratios as well as enhanced optical, photonic, and electronic properties to bulk metallic materials. Such behaviours are correlated to the nano-scale inter-grain metal domains that favour the presence of electronic vacancies. In this work, continuous 3D NMMs were synthesized for the first time through a simple diffusion-reduction process whereby the aerogel matrix was functionalized with (3-Mercaptopropyl)trimethoxysilane.
View Article and Find Full Text PDFIon-exchange membranes are composite separation materials increasingly used in a variety of electro-membranes and electrochemical processes. Although promising for solvent reclamation, to date, their main applications are limited to aqueous environments due to physicochemical and microstructural changes of the materials upon exposure to nonaqueous and mixed solvents solutions, affecting long-term stability and separation performance. In the present work, the structural changes of commercial and novel hybrid ion-exchange membranes in mixed methanol/water and ethanol/water solutions are assessed for the first time using ultra- and small-angle neutron scattering techniques.
View Article and Find Full Text PDFApplication of elastic theory to experimental data of capsule and particle compression under-predicts the value of material properties such as the Young's modulus by up to 100% when the effect of the rigid substrate is neglected, as is commonly done in the literature. Results of numerical simulations, spanning the range from thin-shelled capsules to solid particles, are presented in terms of correction factors that account for the substrate. In addition, the scaling relationship between indentation force and displacement is characterised for arbitrary shell thicknesses and indenter radii.
View Article and Find Full Text PDFEmulsion formulation, solvent extraction and multiphase microfluidics are all examples of processes that require precise control of drop or bubble collision stability. We use a previously validated numerical model to map the exact conditions under which micron-sized drops or bubbles undergo coalescence in the presence of colloidal forces and hydrodynamic effects relevant to Brownian motion and low Reynolds number flows. We demonstrate that detailed understanding of how the equilibrium surface forces vary with film thickness can be applied to make accurate predictions of the outcome of a drop or bubble collision when hydrodynamic effects are negligible.
View Article and Find Full Text PDFThe organized assembly of particles into superstructures is typically governed by specific molecular interactions or external directing factors associated with the particle building blocks, both of which are particle-dependent. These superstructures are of interest to a variety of fields because of their distinct mechanical, electronic, magnetic and optical properties. Here, we establish a facile route to a diverse range of superstructures based on the polyphenol surface-functionalization of micro- and nanoparticles, nanowires, nanosheets, nanocubes and even cells.
View Article and Find Full Text PDFNitrogen deprivation (N-deprivation) is a proven strategy for inducing triacylglyceride accumulation in microalgae. However, its effect on the physical properties of cells and subsequently on product recovery processes is relatively unknown. In this study, the effect of N-deprivation on the cell size, cell wall thickness, and mechanical strength of three microalgae was investigated.
View Article and Find Full Text PDF