Wood-based hydrogel with a unique anisotropic structure is an attractive soft-and-wet material. However, it remains a challenge to simultaneously achieve robust, multi-functional, and multi-response integrations through a sustainable and green approach. Herein, a bioinspired, additive-free method is reported to fabricate composite hydrogels reinforced by naturally high-strength wood skeleton without using any chemical initiators and crosslinking agents.
View Article and Find Full Text PDFSpinal cord injury (SCI) has been considered a clinically challenging disease that is characterized by local disturbance of the microenvironment, which inhibits post-injury neural regeneration. The simulation of a microenvironment conducive to the regeneration of spinal cord is beneficial for SCI repair. In this study, bioactive composite hydrogels are developed that mimic the regenerative microenvironment of spinal cord for enhanced SCI repair.
View Article and Find Full Text PDFDue to dwindling terrestrial uranium resources and escalating ecological pressures, the long-term viability of uranium supply has become a critical concern. The immense uranium reserves in seawater present a potential solution, yet extraction technology faces dual challenges of efficiency and adaptability to complex marine environments. Current interconnected porous adsorbents, despite their high flux properties, are limited by low specific surface area and weak mechanical strength, which constrain their effectiveness.
View Article and Find Full Text PDFMethane emissions from ruminants significantly contribute to greenhouse gases. This study explores the methane mitigation effect and mechanism of through in vitro rumen fermentation, aiming to establish its potential as a feed additive. We investigated the effects of freeze-dried and dried at supplementation levels of 2%, 5%, and 10% of dry matter on nutrient degradation, ruminal fermentation, methane inhibition, and microbial community structure in in vitro rumen fermentation.
View Article and Find Full Text PDFProline 4-hydroxylase 2 (P4HA2) is known for its hydroxylase activity, primarily involved in hydroxylating collagen precursors and promoting collagen cross-linking under physiological conditions. Although its overexpression influences a wide variety of malignant tumors' occurrence and development, its specific effects and mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. This study focused on investigating the expression patterns, carcinogenic functions, and underlying mechanisms of P4HA2 in OSCC cells.
View Article and Find Full Text PDFThe aim of this study was to assess the impact of varying proportions (5-20%) of hydroponic wheat sprouts in the diet of growing four-month-old Hu ewes on their productive performance, metabolic profiles, rumen fermentation, and alterations in microflora. Compared with the control group (CON), the optimum final weight of ewes has been presented in the group of substitution 15% (S15) of the basal diet with hydroponic wheat sprouts. Furthermore, 1-30 d the average daily gain (ADG), 31-60 d ADG, and average feed intake were both significantly improved in S15 compared with CON ( < 0.
View Article and Find Full Text PDFThe present work prepared a novel BiMgO-2MBD (X = 0.42) material for iodine vapor capture in temperature conditions related to spent nuclear fuel reprocessing and nuclear accidents. BiMgO-2MBD (X = 0.
View Article and Find Full Text PDFReproduction in goats is a highly complex and dynamic process of life regulation, involving coordinated regulation from various aspects such as central nervous system regulation, reproductive system development, oocyte maturation, and fertilized egg development. In recent years, researchers have identified numerous genes associated with goat reproductive performance through high-throughput sequencing, single-cell sequencing, gene knockout, and other techniques. However, there is still an urgent need to explore marker genes related to goat reproductive performance.
View Article and Find Full Text PDFPetroleum-based plastics are useful but they pose a great threat to the environment and human health. It is highly desirable yet challenging to develop sustainable structural materials with excellent mechanical and optical properties for plastic replacement. Here, we report a simple and efficient method to manufacture high-performance all-biobased structural materials from cellulosic wood skeleton (WS) and gelatin via oxidation and densification.
View Article and Find Full Text PDFThe ultraviolet (UV) blocking performance of current bio-based devices is always limited by delignification and exploited chemical treatment. Lignocellulosic nanofibril (LCNF) is a promising green alternative that could efficiently impede UV radiation. Herein, we proposed a robust LCNF film that achieved 99.
View Article and Find Full Text PDFThe combination of optical transparency and mechanical strength is a highly desirable attribute of wood-based glazing materials. However, such properties are typically obtained by impregnation of the highly anisotropic wood with index-matching fossil-based polymers. In addition, the presence of hydrophilic cellulose leads to a limited water resistance.
View Article and Find Full Text PDFMaterials (Basel)
February 2023
The double-sided carbonization of poplar with different sections forms a three-layer structure inspired by tree water transpiration. A photothermal evaporation comparison experiment was conducted to simulate the influence of solar radiation intensity (1 kW·m) on uncarbonized and single- and double-sided carbonized poplar specimens. The tissue structure, chemical functional group changes, and profile density of the specimens were analyzed using scanning electron microscopy, Fourier transform infrared spectrometry, and X-ray profile density testing, respectively.
View Article and Find Full Text PDFIn this study, we aimed to develop a prediction model to assist surgeons in choosing an appropriate surgical approach for mitral valve disease patients. We retrospectively analyzed a total of 143 patients who underwent surgery for mitral valve disease. The XGBoost algorithm was used to establish a predictive model to decide a surgical approach (mitral valve repair or replacement) based on the echocardiographic features of the mitral valve apparatus, such as leaflets, the annulus, and sub-valvular structures.
View Article and Find Full Text PDF() is a medicinal plant widely grown in tropical South China. Given the abundant pruning waste of its leaves, the use of leaves is valuable. In this study, goats were fed a diet containing 20% leaves.
View Article and Find Full Text PDFIn this present study, 195 cow milk, 100 goat milk, 50 buffalo milk, 50 camel milk, and 50 yak milk samples were collected in China in May and October 2016. The presence of aflatoxin M1 (AFM1) was determined using enzyme-linked immunosorbent assay method. For all cow milk samples, 128 samples (65.
View Article and Find Full Text PDFObjective: Despite the rapid development of thoracic endovascular aortic repair (TEVAR), it is still a challenge to maintain the blood flow of the branch arteries above the aortic arch in Stanford type B aortic dissection involving the left subclavian artery (LSA). The Castor stent graft is an integrated, customized, single-branch stent that enables reconstruction of the LSA. The purpose of this systematic review and meta-analysis was to assess the efficacy of the Castor stent graft for type B aortic dissection.
View Article and Find Full Text PDFInt J Biol Macromol
December 2022
Herein, a facile wet-spinning strategy was used for the fabrication of mechanically strong all-chitin filaments from an aqueous NaOH solution using β-chitin nanofibers (β-ChNFs). It is hypothesized that to reach high mechanical performance it is important to preserve the crystalline structure of chitin during fabrication. To explore this possibility, β-ChNFs were disintegrated from squid pens by a mild procedure and showed a uniform diameter of 10-25 nm, length of a few microns, and a high aspect ratio of more than 200.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Renewable and biodegradable natural polymeric materials are attractive candidates for replacing nonbiodegradable plastics. However, it is challenging to fabricate polysaccharide-based materials (such as cellulose and chitin) that can be used in humid or even watery environments due to their inferior stability against water. Here, a self-locking structure is constructed to develop a strong, water-resistant, and ionic conductive all-chitosan film without other additives.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
We investigate the mechanism of binding of dopamine-conjugated carboxymethyl cellulose (DA-CMC) with carbon nanotubes (CNTs) and the strain-induced interfacial strengthening that takes place upon wet drawing and stretching filaments produced by wet-spinning. The filaments are known for their tensile strength (as high as 972 MPa and Young modulus of 84 GPa) and electrical conductivity (241 S cm). The role of axial orientation in the development of interfacial interactions and structural changes, enabling shear load bearing, is studied by molecular dynamics simulation, which further reveals the elasto-plasticity of the system.
View Article and Find Full Text PDFThe purpose of this research is to develop strong and tough wood-based hydrogels, which are reinforced by an aligned cellulosic wood skeleton. The hypothesis is that improved interfacial interaction between the wood cell wall and a polymer is of great importance for improving the mechanical performance. To this end, a facile and green approach, called ultraviolet (UV) grafting, was performed on the polyacrylamide (PAM)-infiltrated wood skeleton without using initiators.
View Article and Find Full Text PDFThermal treatments of milk induce changes in the properties of milk whey proteins. The aim of this study was to investigate the specific changes related to nutrients in the whey proteins of dairy cow milk after pasteurization at 85 °C for 15 s or ultra-high temperature (UHT) at 135 °C for 15 s. A total of 223 whey proteins were confidently identified and quantified by TMT-based global discovery proteomics in this study.
View Article and Find Full Text PDFMilk is considered a perfect natural food for humans and animals. However, aflatoxin B1 (AFB1) contaminating the feeds fed to lactating dairy cows can introduce aflatoxin M1 (AFM1), the main toxic metabolite of aflatoxins into the milk, consequently posing a risk to human health. As a result of AFM1 monitoring in raw milk worldwide, it is evident that high AFM1 concentrations exist in raw milk in many countries.
View Article and Find Full Text PDFBackgroud: The 5'-3' exoribonuclease 2 (XRN2) has been reported involved in several tumors. However, the clinical significance and molecular mechanism of XRN2 in oral squamous cell carcinoma (OSCC) have not been elucidated.
Materials And Methods: Immunohistochemistry (IHC) was used to investigate the expression of XRN2 in OSCC and adjacent noncancerous tissues, which was further identified by western blot and GEPIA2 database analysis.