Background: Lung region segmentation is an important stage of automated image-based approaches for the diagnosis of respiratory diseases. Manual methods executed by experts are considered the gold standard, but it is time consuming and the accuracy is dependent on radiologists' experience. Automated methods are relatively fast and reproducible with potential to facilitate physician interpretation of images.
View Article and Find Full Text PDFThe purpose of this study was to investigate the challenges in comparing digital radiography (DR) systems from different vendors for various combinations of exposure factors in posterior-anterior hand radiographs. Image quality was evaluated for a range of tube voltages and tube current-time products using a technical contrast-detail (CDRAD) phantom and an anthropomorphic hand phantom. 900 technical CDRAD images were analysed providing quality figures of merit (IQFinv) and two experienced reporting radiographers using visual grading analysis (VGA) scored 108 anthropomorphic images.
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2019
The purpose was to examine if scatter correction software could replace a grid while maintaining image quality and reducing radiation dose for pelvic DR examinations. Grid images was produced with 70 kV and 16mAs. Anthropomorphic- and Contrast Detail RADiography (CDRAD) non-grid images were produced with 60 kV, 80 kV and 90 kV combined with five different mAs and scatter correction software.
View Article and Find Full Text PDFBackground Computed tomography (CT) technology is rapidly evolving and software solution developed to optimize image quality and/or lower radiation dose. Purpose To investigate the influence of adaptive statistical iterative reconstruction (ASIR) at different radiation doses in coronary CT angiography (CCTA) in detailed image quality. Material and Methods A total of 160 CCTA were reconstructed as follows: 55 scans with filtered back projection (FBP) (650 mA), 51 scans (455 mA) with 30% ASIR (ASIR30), and 54 scans (295 mA) with 60% ASIR (ASIR60).
View Article and Find Full Text PDFBackground: Coronary computed tomography angiography (CCTA) requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR) techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure.
Purpose: To evaluate whether adaptive statistical iterative reconstruction (ASIR) enhances perceived image quality in CCTA compared to filtered back projection (FBP).
Objective: The aim of this study was to evaluate how different iterative and filtered back projection kernels affect the computed tomography (CT) numbers and low contrast detectability.
Methods: Five different scans were performed at 6 different tube potentials on the same Catphan 600 phantom using approximately the same dose level and otherwise identical settings. The scans were reconstructed using all available filtered back projection body kernels and with iterative reconstruction techniques.
The aim of this study was to compare image noise properties of GE Discovery HD 750 and Toshiba Aquilion ONE. The uniformity section of a Catphan 600 image quality assurance phantom was scanned with both scanners, at different dose levels and with extension rings simulating patients of different sizes. 36 datasets were obtained and analyzed in terms of noise power spectrum.
View Article and Find Full Text PDFA newly developed Digital Radiography (DR) detector has smaller pixel size and higher fill factor than earlier detector models. These technical advantages should theoretically lead to higher sensitivity and higher spatial resolution, thus making dose reduction possible without scarifying image quality compared to previous DR detector versions. To examine whether the newly developed Canon CXDI-70C DR detector provides an improved image quality and/or allows for dose reductions in hand and pelvic bone examinations as well as premature chest examinations, compared to the previous (CXDI-55C) DR detector version.
View Article and Find Full Text PDF