Publications by authors named "Dag K Skovseth"

The future ability to manipulate the growth of new blood vessels (angiogenesis) holds great promise for treating ischemic disease and cancer. Several models of human in vivo angiogenesis have been described, but they seem to depend on transgenic support and have not been validated in a therapeutic context. Here, we describe an in vivo assay that mimics human angiogenesis in which native human umbilical vein-derived endothelial cells are suspended in a liquid laminin/collagen gel (Matrigel), injected into immunodeficient mice, and develop into mature, functional vessels that vascularize the Matrigel plug in the course of 30 d.

View Article and Find Full Text PDF

Gene-targeted mice have recently revealed a role for lymphocytes and interferon-gamma (IFNgamma) in conferring protection against cancer, but the mechanisms remain unclear. Here, we have characterized a successful primary antitumor immune response initiated by naive CD4+ T cells. Major histocompatibility complex class II (MHC-II)-negative myeloma cells injected subcutaneously into syngeneic mice were surrounded within 3 days by macrophages that captured tumor antigens.

View Article and Find Full Text PDF

Endostatin is a proteolytic fragment of collagen XVIII that inhibits endothelial cell migration in vitro and experimental tumor growth in vivo. To determine how endostatin affects the in vivo behavior of endothelial cells, we took advantage of a surrogate model of human angiogenesis, in which human endothelial cells are transferred to immunodeficient mice and develop into complex vessels in the course of 30 days. Systemic delivery of human yeast-derived endostatin (serum levels of 30-35 ng/mL) inhibited the number of human vessels dramatically (95% at day 20), as most endothelial cells remained suspended as single cells.

View Article and Find Full Text PDF

To establish a model for adoptive transfer of endothelial cells, we transferred human umbilical vein endothelial cells (HUVECs) to immunodeficient mice (Rag 2(-/-)). HUVECs were suspended as single cells in Matrigel and injected subcutaneously in the abdominal midline. Within 10 days after injection, HUVECs expressed pseudopod-like extensions and began to accumulate in arrays.

View Article and Find Full Text PDF