Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions.
View Article and Find Full Text PDFBackground: The early and specific detection of abiotic and biotic stresses, particularly their combinations, is a major challenge for maintaining and increasing plant productivity in sustainable agriculture under changing environmental conditions. Optical imaging techniques enable cost-efficient and non-destructive quantification of plant stress states. Monomodal detection of certain stressors is usually based on non-specific/indirect features and therefore is commonly limited in their cross-specificity to other stressors.
View Article and Find Full Text PDFDecellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison.
View Article and Find Full Text PDFProcessive enzymes like polymerases or ribosomes are often studied in bulk experiments by monitoring time-dependent signals, such as fluorescence time traces. However, due to biomolecular process stochasticity, ensemble signals may lack the distinct features of single-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from processive reactions can be decomposed to unveil hidden information about individual reaction steps.
View Article and Find Full Text PDFTriple-negative breast cancer is an aggressive subtype of breast cancer that has a poor five-year survival rate. The tumor's extracellular matrix is a major compartment of its microenvironment and influences the proliferation, migration and the formation of metastases. The study of such dependencies requires methods to analyze the tumor matrix in its native form.
View Article and Find Full Text PDFOxidative stress is a cause for numerous diseases and aging processes. Thus, researchers are keen to tune the level of intracellular stress and to learn from that. An unusual approach is presented here.
View Article and Find Full Text PDFLasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection.
View Article and Find Full Text PDFAvoiding damage of the endothelial cells, especially in thin corneas, remains a challenge in corneal collagen crosslinking (CXL). Knowledge of the riboflavin gradients and the UV absorption characteristics after topical application of riboflavin in concentrations ranging from 0.1% to 0.
View Article and Find Full Text PDFBackground: In this study, the tear resistance of porcine lens capsules after continuous curvilinear capsulorhexis (CCC) and femtosecond (fs)-laser-assisted capsulotomy for cataract surgery (FLC) with different laser parameters is measured with a custom-made testing setup.
Methods: Forty-five fresh porcine lenses were randomly chosen for CCC (n = 15) or FLC 1 (n = 15) and FLC 2 (n = 15). The FLC 1-group was treated with smaller spot distances than the FLC 2-group.
Light as a tool in medical therapy and biological research has been studied extensively and its application is subject to continuous improvement. However, safe and efficient application of light-based methods in photomedicine or optogenetics requires knowledge about the optical properties of the target tissue as well as the response characteristics of the stimulated cells. Here, we used tissue phantoms and a heart-like light-sensitive cell line to investigate optogenetic stimulation through tissue layers.
View Article and Find Full Text PDFHydrogels are favored materials in tissue engineering as they can be used to imitate tissues, provide scaffolds, and guide cell behavior. Recent advances in the field of optogenetics have created a need for biocompatible optical waveguides, and hydrogels have been investigated to meet these requirements. However, combining favorable waveguiding characteristics, high biocompatibility, and controllable bioactivity in a single device remains challenging.
View Article and Find Full Text PDFHydrogel waveguides have found increased use for variety of applications where biocompatibility and flexibility are important. In this work, we demonstrate the use of polyethylene glycol diacrylate (PEGDA) waveguides to realize a monolithic lab-on-a-chip device. We performed a comprehensive study on the swelling and optical properties for different chain lengths and concentrations in order to realize an integrated biocompatible waveguide in a microfluidic device for chemical sensing.
View Article and Find Full Text PDFStimulation of neuronal cells generally resorts to electric signals. Recent advances in laser-based stimulation methods could present an alternative with superior spatiotemporal resolution. The avoidance of electronic crosstalk makes these methods attractive for in vivo therapeutic application.
View Article and Find Full Text PDFThe integration of metal microstructures and soft materials is promising for the realization of novel optical and biomedical devices owing to the flexibility and biocompatibility of the latter. Nevertheless, the fabrication of three-dimensional metal structures within a soft material is still challenging. In this study, we demonstrate the fabrication of a silver diffraction grating inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel by using a 522-nm femtosecond laser via multi-photon photoreduction of silver ions.
View Article and Find Full Text PDFLaser-exposed plasmonic substrates permeabilize the plasma membrane of cells when in close contact to deliver cell-impermeable cargo. While studies have determined the cargo delivery efficiency and viability of laser-exposed plasmonic substrates, morphological changes in a cell have not been quantified. We porated myoblast C2C12 cells on a plasmonic pyramid array using a 532-nm laser with 850-ps pulse length and time-lapse fluorescence imaging to quantify cellular changes.
View Article and Find Full Text PDFMicro-/nanosphere-mediated femtosecond laser cell perforation is one of the high throughput technologies used for macro-molecule-delivery into multiple cells. We have demonstrated the delivery of plasmid-DNA/liposome complexes into cells using biodegradable polymer microspheres and a femtosecond laser and investigated the intracellular localization of the complexes by delivering fluorescence-labeled plasmid-DNA/liposome complexes into cells. The utilization of liposomes increases the number of complexes delivered into the cytoplasm by laser illumination, which contributed to the increased transfection rate.
View Article and Find Full Text PDFThe mammalian cochlea is a complex macroscopic structure due to its helical shape and the microscopic arrangements of the individual layers of cells. To improve the outcomes of hearing restoration in deaf patients, it is important to understand the anatomic structure and composition of the cochlea ex vivo. Hitherto, only one histological technique based on confocal laser scanning microscopy and optical clearing has been developed for in toto optical imaging of the murine cochlea.
View Article and Find Full Text PDFCan photothermal gold nanoparticle mediated laser manipulation be applied to induce cardiac contraction? Based on our previous work, we present a novel concept of cell stimulation. A 532 nm picosecond laser was employed to heat gold nanoparticles on cardiomyocytes. This leads to calcium oscillations in the HL-1 cardiomyocyte cell line.
View Article and Find Full Text PDFThe fabrication of three-dimensional (3D) metal microstructures in a synthetic polymer-based hydrogel is demonstrated by femtosecond laser-induced photoreduction. The linear-shaped silver structure of approximately 2 micrometers in diameter is fabricated inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel. The silver structure is observed and confirmed by scanning electron microscopy (SEM) and elemental analysis using energy-dispersive X-ray spectroscopy (EDX).
View Article and Find Full Text PDFThe use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse.
View Article and Find Full Text PDFLaser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle–mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities.
View Article and Find Full Text PDFLaser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g.
View Article and Find Full Text PDFBackground: In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein.
View Article and Find Full Text PDFGold nanoparticle mediated (GNOME) laser transfection is a powerful technique to deliver small biologically relevant molecules into cells. However, the transfection of larger and especially negatively charged DNA remains challenging. The efficiency for pDNA was 0.
View Article and Find Full Text PDF