The diffraction efficiencies of a complex binary diffraction grating with a rectangular profile are controlled through the steps' phases, amplitudes, and duty cycle, based on analytical expressions. It is demonstrated that the zeroth-diffraction order can be canceled for any arbitrary value of the duty cycle, provided that a π-phase difference is imposed, along with a specific ratio of the steps' amplitudes. This feature is not feasible for separated amplitude-only and phase-only rectangular binary gratings in the context of one-dimensional gratings.
View Article and Find Full Text PDFA current challenge in a caustic beam design is to tailor the intensity distribution along the curved trajectory. To address this matter, we present a robust theoretical framework that relates the propagated complex wave field amplitude with the input spectral signal encoded onto a spatial light modulator which is suitable for fold-type monotonic trajectories as well as for cusp-type nonmonotonic trajectories. Specifically, we derive a general closed-form expression that relates the field amplitude along the beam trajectory with the spectral amplitude and the third derivative of the spectral phase for both monotonic and nonmonotonic curved trajectories.
View Article and Find Full Text PDFA controllable manipulation of the energy distribution of caustic beams possessing rectangular symmetry is presented. The beams are designed from the spectral phase by adding a linear and/or quadratic perturbation having forced symmetry. This approach breaks the overall caustic structure into branches, allowing a fully controllable displacement of each branch.
View Article and Find Full Text PDFIn this Letter, we present to the best of our knowledge a new all-optical technique for multiple-image encryption and multiplexing, based on fractal encrypting masks. The optical architecture is a joint transform correlator. The multiplexed encrypted data are stored in a photorefractive crystal.
View Article and Find Full Text PDFWe show that multiple secure data recording under a wavelength multiplexing technique is possible in a joint transform correlator (JTC) arrangement. We evaluate both the performance of the decrypting procedure and the influence of the input image size when decrypting with a wavelength different from that employed in the encryption step. This analysis reveals that the wavelength is a valid parameter to conduct image multiplexing encoding with the JTC architecture.
View Article and Find Full Text PDFWe propose a multichanneling encryption method by using multiple random-phase mask apertures in the input plane based on a joint transform correlation scheme. In the proposal, this multiple aperture arrangement is changed as different input objects are inserted and stored. Then, during the decryption step, the appropriate use of the random-phase mask apertures can ensure the retrieval of different information.
View Article and Find Full Text PDF