Publications by authors named "Dafna Kesselman"

Glucose galactose malabsorption (GGM) is a rare autosomal recessive disorder characterized by life-threatening osmotic diarrhea at infancy. When the intake of the offending sugars (namely, glucose, galactose and lactose) is ceased, the diarrhea promptly stops. Mutations in the SLC5A1 gene, encoding the sodium-glucose co-transporter located in the brush border of enterocytes, have been shown to cause the disease.

View Article and Find Full Text PDF

Mesenchymal stromal cells residing in proteolytically responsive hydrogel scaffolds were subjected to changes in mechanical properties associated with their own three-dimensional (3-D) morphogenesis. In order to investigate this relationship the current study documents the transient degradation and restructuring of fibroblasts seeded in hydrogel scaffolds undergoing active cell-mediated reorganization over 7days in culture. A semi-synthetic proteolytically degradable polyethylene glycol-fibrinogen (PF) hydrogel matrix and neonatal human dermal fibroblasts (NHDF) were used.

View Article and Find Full Text PDF

Our previous reports showed that the cisplatin exposure induced the ATM-dependent phosphorylation of ΔNp63a, which is subsequently involved in transcriptional regulation of gene promoters encoding mRNAs and microRNAs in squamous cell carcinoma (SCC) cells upon cisplatin-induced cell death. We showed that phosphorylated (p)-ΔNp63a plays a role in upregulation of pro-apoptotic proteins, while non-p-ΔNp63a is implicated in pro-survival signaling. In contrast to non-p-ΔNp63a, p-ΔNp63a modulated expression of specific microRNAs in SCC cells exposed to cisplatin.

View Article and Find Full Text PDF

There is an increasing need to develop new biomaterials as tissue engineering scaffolds. Unfortunately, many of the materials that have been studied for these purposes are polyesters that hydrolytically degrade into acidic products, which may harm the surrounding tissue, and lead to accelerated degradation of the biomaterial. To overcome this disadvantage, a novel class of biomaterials based on a cyclic acetal unit has been created.

View Article and Find Full Text PDF