The development of polysaccharide-based wound dressings that are easy to prepare, adhere to tissue, adapt to diverse shapes and exhibit tunable mechanical properties holds significant clinical interest. This study introduced a simple spontaneous liquid-liquid phase separation technique employing low-molecular-weight and high polyion concentration of chitosan (CS) and hyaluronic acid (HA) to fabricate CS/HA coacervates. Upon increasing the molecular weight of chitosan from 7 kDa to 250 kDa, a transition in the CS/HA coacervates from liquid-like state to an elastic liquid and eventually to a solid-like state was observed.
View Article and Find Full Text PDFCarboxymethyl chitosan (CMCS) and sodium alginate (SA), which are excellent polysaccharide-based hemostatic agents, are capable of forming polyelectrolyte complexes (PEC) through electrostatic interactions. However, CMCS/SA PEC sponges prepared by the conventional sol-gel process exhibited slow liquid absorption rate and poor mechanical properties post-swelling. In this work, a novel strategy involving freeze casting followed by acetic acid vapor treatment to induce electrostatic interactions was developed to fabricate novel PEC sponges with varying CMCS/SA mass ratios.
View Article and Find Full Text PDF