Hematology analysis, a common clinical test for screening various diseases, has conventionally required a chemical staining process that is time-consuming and labor-intensive. To reduce the costs of chemical staining, label-free imaging can be utilized in hematology analysis. In this work, we exploit optical diffraction tomography and the fully convolutional one-stage object detector or FCOS, a deep learning architecture for object detection, to develop a label-free hematology analysis framework.
View Article and Find Full Text PDFThe healthcare industry is in dire need of rapid microbial identification techniques for treating microbial infections. Microbial infections are a major healthcare issue worldwide, as these widespread diseases often develop into deadly symptoms. While studies have shown that an early appropriate antibiotic treatment significantly reduces the mortality of an infection, this effective treatment is difficult to practice.
View Article and Find Full Text PDFIn tomographic reconstruction, the image quality of the reconstructed images can be significantly degraded by defects in the measured two-dimensional (2D) raw image data. Despite the importance of screening defective 2D images for robust tomographic reconstruction, manual inspection and rule-based automation suffer from low-throughput and insufficient accuracy, respectively. Here, we present deep learning-enabled quality control for holographic data to produce robust and high-throughput optical diffraction tomography (ODT).
View Article and Find Full Text PDF