Lipocalin-2 (LCN2) is an acute-phase secretory molecule significantly upregulated in various neuroinflammatory and demyelinating conditions. Krabbe disease (KD) is a neurodegenerative lysosomal disorder caused by a galactosylceramidase (GALC) deficiency, accumulating cytotoxic psychosine in nervous systems, and subsequent neuroinflammation. Here, we show that LCN2 is highly overexpressed in GALC-deficient astrocytes.
View Article and Find Full Text PDFLysosomal galactosylceramidase (GALC) is expressed in all brain cells, including oligodendrocytes (OLs), microglia, and astrocytes, although the cell-specific function of GALC is largely unknown. Mutations in GALC cause Krabbe disease (KD), a fatal neurological lysosomal disorder that usually affects infants. To study how Galc ablation in each glial cell type contributes to Krabbe pathogenesis, we used conditional Galc-floxed mice.
View Article and Find Full Text PDFKrabbe disease is caused by a deficiency of the lysosomal galactosylceramidase (GALC) enzyme, which results in the accumulation of galactosylceramide (GalCer) and psychosine. In Krabbe disease, the brunt of demyelination and neurodegeneration is believed to result from the dysfunction of myelinating glia. Recent studies have shown that neuronal axons are both structurally and functionally compromised in Krabbe disease, even before demyelination, suggesting a possible neuron-autonomous role of GALC.
View Article and Find Full Text PDFGloboid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery.
View Article and Find Full Text PDFLysosomes are cellular organelles that contain various acidic digestive enzymes. Despite their small size, they have multiple functions. Lysosomes remove or recycle unnecessary cell parts.
View Article and Find Full Text PDFKrabbe disease (KD) is caused by a deficiency of galactosylceramidase (GALC), which induces demyelination and neurodegeneration due to accumulation of cytotoxic psychosine. Hematopoietic stem cell transplantation (HSCT) improves clinical outcomes in KD patients only if delivered pre-symptomatically. Here, we hypothesize that the restricted temporal efficacy of HSCT reflects a requirement for GALC in early brain development.
View Article and Find Full Text PDFMany therapies for lysosomal storage disorders rely on cross-correction of lysosomal enzymes. In globoid cell leukodystrophy (GLD), mutations in GALC cause psychosine accumulation, inducing demyelination, a neuroinflammatory "globoid" reaction and neurodegeneration. The efficiency of GALC cross-correction in vivo, the role of the GALC substrate galactosylceramide, and the origin of psychosine are poorly understood.
View Article and Find Full Text PDFThere are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies.
View Article and Find Full Text PDFKrabbe disease (KD) is caused by mutations in the galactosylceramidase (GALC) gene, which encodes a lysosomal enzyme that degrades galactolipids, including galactosylceramide and galactosylsphingosine (psychosine). GALC deficiency results in progressive intracellular accumulation of psychosine, which is believed to be the main cause for the demyelinating neurodegeneration in KD pathology. Umbilical cord blood transplantation slows disease progression when performed presymptomatically but carries a significant risk of morbidity and mortality.
View Article and Find Full Text PDFUnlabelled: Globoid cell leukodystrophy (GLD, Krabbe disease) is due to autosomal recessive mutations in the lysosomal enzyme galactosylceramidase (GALC). Many GLD patients develop infantile-onset of progressive neurologic deterioration and death by 2 years of age, whereas others have a later-onset, milder disease. Cord blood transplant slows disease progression much more effectively when performed presymptomatically, highlighting the importance of early diagnosis.
View Article and Find Full Text PDFVLGR1 (very large G protein-coupled receptor 1), also known as MASS1 (monogenic audiogenic seizure susceptible 1), is an orphan G protein-coupled receptor that contains a large extracellular N terminus with 35 calcium-binding domains. A truncating mutation in the Mass1 gene causes autosomal recessive, sound-induced seizures in the Frings mouse. However, the function of MASS1 and the mechanism underlying Frings mouse epilepsy are not known.
View Article and Find Full Text PDFThe detailed mechanism driving the germinal center (GC) reaction to B cell lymphomagenesis has not been clarified. Thioredoxin interacting protein (TXNIP), also known as vitamin D3 up-regulated protein 1 which is an important tumor repressor, is involved in stress responses, redox regulation, and cellular proliferation. Here, we report that TXNIP has a potential role in the formation of GC in peripheral lymphoid organs where B lymphocytes divide rapidly.
View Article and Find Full Text PDFObjective: MicroRNAs (miRNAs) regulate gene expression and have many roles in the brain, but a role in oligodendrocyte (OL) function has not been demonstrated.
Methods: A Dicer floxed conditional allele was crossed with the proteolipid protein promoter-driven inducible Cre allele to generate inducible, OL-specific Dicer-floxed mice.
Results: OL-specific Dicer mutants show demyelination, oxidative damage, inflammatory astrocytosis and microgliosis in the brain, and eventually neuronal degeneration and shorter lifespan.
Biochim Biophys Acta
May 2008
Hypoxia-inducible factor 1alpha (HIF1alpha) is a critical transcriptional factor for inducing tumor metastasis, and stabilized under hypoxia but degraded by von Hippel-Lindau protein (pVHL) under normoxia. For the maximal degradation of HIF1alpha, it must be exported to the cytoplasm via an unidentified transporter. Here, we demonstrate that vitamin D3 up-regulated protein 1 (VDUP1) associates with the beta-domain of pVHL and enhances the interaction between pVHL and HIF1alpha to promote the nuclear export and degradation of HIF1alpha hypoxia-independently.
View Article and Find Full Text PDFMethylglyoxal (MG) is a highly reactive metabolic intermediate, presumably accumulated during uncontrolled carbohydrate metabolism. The major source of MG is dihydroxyacetone phosphate, which is catalyzed by MG synthase (the mgs product) in bacteria. We observed Escherichia coli cell death when the ribose transport system, consisting of the RbsDACBK proteins, was overproduced on multicopy plasmids.
View Article and Find Full Text PDFIt was found that an extra exon exists in the first intron of glutamine synthetase gene, generated by means of alternative splicing. Inclusion of this exon decreased the translation of glutamine synthetase (GS) in human, dog, and mouse. When translated in vitro with the canine GS transcript containing the exon, we obtained two different species of GS enzymes.
View Article and Find Full Text PDFThe expression of glutamine synthetase (GS), catalysing the ATP-dependent conversion of glutamate and ammonia into glutamine, is transcriptionally and post-transcriptionally regulated. The genomic structure of dog GS shown in the present study is basically similar to that of other mammals in that it is composed of seven exons and six introns. Using 5'-cRACE (where cRACE stands for circular rapid amplification of cDNA ends) and reverse transcriptase-PCR, we identified an additional exon (120 bp) in the first intron, designated in the present study as exon 1'.
View Article and Find Full Text PDF