To reveal the applicability of singlet fission processes in perovskite solar cell, we investigated electron transfer from TIPS-pentacene to CHNHPbI (MAPbI) perovskite in film phase. Through the observation of the shorter fluorescence lifetime in TIPS-pentacene/MAPbI perovskite bilayer film (5 ns) compared with pristine MAPbI perovskite film (20 ns), we verified electron-transfer processes between TIPS-pentacene and MAPbI perovskite. Furthermore, the observation of singlet fission processes, a faster decay rate, TIPS-pentacene cations, and the analysis of kinetic profiles of the intensity ratio between 500 and 525 nm in the TA spectra of the TIPS-pentacene/MAPbI perovskite bilayer film indicate that electron transfer occurs from triplet state of TIPS-pentacene generated by singlet fission processes to MAPbI perovskite conduction band.
View Article and Find Full Text PDFSubporphyrinatoboron(III) (SubB) sensitizers were synthesized for use in dye-sensitized solar cells (DSSCs). The prototype, which comprises a sterically demanding 3,5-di-tert-butylphenyl scaffold, a meso-ethynylphenyl spacer, and a cyanoacrylic acid anchoring group, achieved an open-circuit voltage VOC of 836 mV, short-circuit current density JSC of 15.3 mA cm(-2) , fill factor of 0.
View Article and Find Full Text PDFA series of new β-functionalized push-pull-structured porphyrin dyes were synthesized so as to investigate the effect of the π-conjugated spacer on the performance of dye-sensitized solar cells (DSSCs). Suzuki- and Heck-type palladium-catalyzed coupling methodologies were used to obtain various β-functionalized porphyrins and β-benzoic acid (ZnPHn) and β-vinylbenzoic acid (ZnPVn) derivatives from β-borylated porphyrin precursors. Photophysical studies of the resulting porphyrins revealed a clear dependence on the nature of the β linker.
View Article and Find Full Text PDFWe developed a unique strategy for fabricating hierarchically structured (nanoparticles-in-beads) Zn2SnO4 beads (ZTO-Bs), which were then used to produce ternary metal oxide-based dye-sensitized solar cells (DSSCs). DSSCs were fabricated using the ZTO-Bs as the photoelectrodes and highly absorbable organic dyes as the sensitizers. The DSSCs based on the ZTO-Bs and the organic dyes (SJ-E1 and SJ-ET1) exhibited the highest performance ever reported for DSSCs with ternary metal oxide-based photoelectrodes.
View Article and Find Full Text PDFAmong ternary oxides, Zn2 SnO4 (ZSO) is considered for dye-sensitized solar cells (DSSCs) because of its wide bandgap, high optical transmittance, and high electrical conductivity. However, ZSO-based DSSCs have a poor performance record owing largely to the absence of systematic efforts to enhance their performance. Herein, general strategies are proposed to improve the performance of ZSO-based DSSCs involving interfacial engineering/modification of the photoanode.
View Article and Find Full Text PDFWe have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2-4 mScm⁻¹) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.
View Article and Find Full Text PDFHierarchically structured TiO2 (HS-TiO2) was prepared on a flexible ITO-PEN (polyethylene naphthalate) substrate via electrospray deposition using a commercially available TiO2 nanocrystalline powder in order to fabricate flexible DSSCs under low-temperature (<150 °C) conditions. The cell efficiency increased when using flexible ITO-PEN substrates post-treated by either a mechanical compression treatment or a chemical sintering treatment using titanium n-tetrabutoxide (TTB). The mechanical compression treatment reduced the surface area and porosity of the HS-TiO2; however, this treatment improved the interparticle connectivity and physical adhesion between the HS-TiO2 and ITO-PEN substrate, which increased the photocurrent density of the as-pressed HS-TiO2 cells.
View Article and Find Full Text PDFWe report a simple method to prepare hierarchically structured TiO(2) spheres (HS-TiO(2)), using an electrostatic spray technique, that are utilized for photoelectrodes of highly efficient dye-sensitized solar cells (DSSCs). This method has an advantage to remove the synthesis steps in conventional sol-gel method to form nano-sized spheres of TiO(2) nanoclusters. The fine dispersion of commercially available nanocrystalline TiO(2) particles (P25, Degussa) in EtOH without surfactants and additives is electro-sprayed directly onto a fluorine-dopoed tin-oxide (FTO) substrate for DSSC photoelectrodes.
View Article and Find Full Text PDFHigh-performance, room-temperature (RT), solid-state dye-sensitized solar cells (DSSCs) were fabricated using hierarchically structured TiO₂ nanofiber (HS-NF) electrodes and plastic crystal (PC)-based solid-state electrolytes. The electrospun HS-NF photoelectrodes possessed a unique morphology in which submicrometer-scale core fibers are interconnected and the nanorods are dendrited onto the fibers. This nanorod-in-nanofiber morphology yielded porosity at both the mesopore and macropore level.
View Article and Find Full Text PDF