Publications by authors named "Daeseung Kyung"

The slow anodic oxygen evolution reaction (OER) significantly limits electrocatalytic water splitting for hydrogen production. We proposed the electrocatalyst for glucose oxidation by Ta-doping NiFe LDH nanosheets to simultaneously obtain glucaric acid (GRA) and hydrogen gas as a useful byproduct. Superior glucose oxidation reaction (GOR) activity is demonstrated by the optimized Ta-NiFe LDH, which has a low overpotential of 192 mV, allowing for a small Tafel slope of 70 mV dec and a current density of 50 mA cm.

View Article and Find Full Text PDF

This study is aimed at utilizing three waste materials, i.e., solid refuse fuel (SRF), tire derived fuel (TDF), and sludge derived fuel (SDF), as eco-friendly alternatives to coal-only combustion in co-firing power plants.

View Article and Find Full Text PDF

Carbon dioxide (CO) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution.

View Article and Find Full Text PDF

We synthesized iron-coated pine-bark biochar (Fe-PBB) and determined the optimal conditions for removing the antibiotic tetracycline from water. The Fe-PBB was synthesized by depositing iron oxide on pyrolyzed pine-bark waste via a facile co-precipitation method. Characterization (SEM, EDX, and TGA) showed successful deposition of a mass of approximately 27% (w/w) iron on the PBB to synthesize Fe-PBB.

View Article and Find Full Text PDF

Spent tea leaves were functionalized with ascorbic acid to obtain treated tea waste (t-TW) to encourage the adsorption of hexavalent chromium from water. The adsorption removal of Cr(VI) was systematically investigated as a function of four experimental factors: pH (2-12), initial Cr(VI) concentration (1-100 mg L), t-TW dosage (0-4 g L), and temperature (10-50 °C) by following a statistical experimental design. A central composite rotatable experimental design based on a response surface methodology was used to establish an empirical model that assessed the individual and combined effects of factors on adsorptive removal of Cr(VI).

View Article and Find Full Text PDF

In this study, we investigated the reduction of toxic Cr(VI) to less toxic Cr(III) using ascorbic acid in various aqueous solutions: deionized water, synthetic soft water, synthetic hard water, and real tap water. The experiments were performed using a statistical experimental design. Response surface methodology (RSM) was used to correlate Cr(VI) reduction (response variable) with experimental parameters such as initial Cr(VI) concentration, humic acid concentration, and ascorbic acid dosage.

View Article and Find Full Text PDF

Experimental and theoretical studies were conducted to identify the molecular-scale reaction mechanism for Cr(VI) removal by a ferrous phosphate mineral, vivianite. The surface-normalized rate constant for Cr(VI) removal in a vivianite suspension at pH 7 was higher than those obtained for other Fe(II)-containing minerals (i.e.

View Article and Find Full Text PDF

Experiments were conducted to investigate the reductive dechlorination of tetrachloroethylene (PCE) by nano-Mackinawite (nFeS) with cyano-cobalamin (Cbl(III)) in cement slurries. Almost complete degradation of PCE by nFeS-Cbl(III) was observed in cement slurries in 5 h and its degradation kinetics (k(obs-PCE)=0.57 h(-1)) was 6-times faster than that of nFeS-Cbl(III) without the cement slurries.

View Article and Find Full Text PDF

In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO2 hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH3(+) group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation.

View Article and Find Full Text PDF

In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.

View Article and Find Full Text PDF

A comprehensive mathematical model developed for this study was used to compare estimates of on-site and off-site CO2 emissions, from conventional and advanced water treatment plants (WTPs). When 200,000 m(3) of raw water at 10 NTU (Nepthelometric Turbidity Unit) was treated by a conventional WTP to 0.1 NTU using aluminum sulfate as a coagulant, the total CO2 emissions were estimated to be 790 ± 228 (on-site) and 69,596 ± 3950 (off-site) kg CO2e/d.

View Article and Find Full Text PDF

Marine sediment core samples collected from a gas hydrate deposit site (Ulleung Basin (UB), East Sea, Korea) were explored to identify the role of sediment organic matters (SOMs) on the formation of CO(2) hydrate. Two distinct CO(2) hydrate formation regimes (favorable (≤40 min) and unfavorable (>250 min)) were observed from the hydrate formation tests. CO(2) hydrate induction time in UB sediment suspensions was approximately seven times faster than that in UB sediment suspensions without SOMs (baked UB), showing a direct influence of SOMs.

View Article and Find Full Text PDF