Publications by authors named "Daen Jannis"

By working out the Bethe sum rule, a boundary condition that takes the form of a linear equality is derived for the fine structure observed in ionization edges present in electron energy-loss spectra. This condition is subsequently used as a constraint in the estimation process of the elemental abundances, demonstrating starkly improved precision and accuracy and reduced sensitivity to the number of model parameters. Furthermore, the fine structure is reliably extracted from the spectra in an automated way, thus providing critical information on the sample's electronic properties that is hard or impossible to obtain otherwise.

View Article and Find Full Text PDF

The rich information of electron energy-loss spectroscopy (EELS) comes from the complex inelastic scattering process whereby fast electrons transfer energy and momentum to atoms, exciting bound electrons from their ground states to higher unoccupied states. To quantify EELS, the common practice is to compare the cross-sections integrated within an energy window or fit the observed spectrum with theoretical differential cross-sections calculated from a generalized oscillator strength (GOS) database with experimental parameters. The previous Hartree-Fock-based and DFT-based GOS are calculated from Schrödinger's solution of atomic orbitals, which does not include the full relativistic effects.

View Article and Find Full Text PDF

Diamond electrochemistry is primarily influenced by quantities of sp-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • The 2D electron gas (2DEG) at oxide interfaces shows unique properties like superconductivity and ferromagnetism, with KTaO (KTO) exhibiting stronger effects compared to SrTiO (STO) due to its larger spin-orbit coupling.
  • Research reveals that the formation of 2DEGs in KTO is linked to cation exchange at the interfaces, differing significantly from the electronic reconstruction process observed in STO.
  • The enhanced interface polarization in KTO leads to a maximum Rashba spin splitting at the superconducting (111) interfaces, which could have significant implications for developing topological superconductors and improving spin-charge interconversion in low-power spin-orbitronic applications.
View Article and Find Full Text PDF

In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model's linearity, the constraints can be imposed through fitting by quadratic programming.

View Article and Find Full Text PDF

Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area.

View Article and Find Full Text PDF

Hybrid pixel direct electron detectors are gaining popularity in electron microscopy due to their excellent properties. Some commercial cameras based on this technology are relatively affordable which makes them attractive tools for experimentation especially in combination with an SEM setup. To support this, a detector characterization (Modulation Transfer Function, Detective Quantum Efficiency) of an Advacam Minipix and Advacam Advapix detector in the 15-30 keV range was made.

View Article and Find Full Text PDF

The control of the Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the CaRuO Mott insulator.

View Article and Find Full Text PDF

Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected.

View Article and Find Full Text PDF

Vanadium dioxide (VO) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains.

View Article and Find Full Text PDF

Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10 m V for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties.

View Article and Find Full Text PDF

A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such as atomic column positions.

View Article and Find Full Text PDF

In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO/BaTiO/SrTiO superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize c-axis oriented BaTiO layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy.

View Article and Find Full Text PDF

The properties of correlated oxides can be manipulated by forming short-period superlattices since the layer thicknesses are comparable with the typical length scales of the involved correlations and interface effects. Herein, we studied the metal-insulator transitions (MITs) in tetragonal NdNiO/SrTiO superlattices by controlling the NdNiO layer thickness, in the unit cell, spanning the length scale of the interfacial octahedral coupling. Scanning transmission electron microscopy reveals a crossover from a modulated octahedral superstructure at = 8 to a uniform nontilt pattern at = 4, accompanied by a drastically weakened insulating ground state.

View Article and Find Full Text PDF

Epitaxial growth of SrTiO (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO /LaFeO SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

Recently, topotactic fluorination has become an alternative way of doping epitaxial perovskite oxides through anion substitution to engineer their electronic properties instead of the more commonly used cation substitution. In this work, epitaxial oxyfluoride SrMnO F films were synthesized via topotactic fluorination of SrMnO films using polytetrafluoroethylene as the fluorine source. Oxidized SrMnO films were also prepared for comparison with the fluorinated samples.

View Article and Find Full Text PDF