Deciphering inter- and intracellular signaling pathways is pivotal for understanding the intricate communication networks that orchestrate life's dynamics. Communication models involving bottom-up construction of protocells are emerging but often lack specialized compartments sufficiently robust and hierarchically organized to perform spatiotemporally defined signaling. Here, the modular construction of communicating polymer-based protocells designed to mimic the transduction of information in retinal photoreceptors is presented.
View Article and Find Full Text PDFLocalized delivery of small interfering RNA (siRNA) is a promising approach for spatial control of cell responses at biomaterial interfaces. Layer-by-layer (LbL) assembly of siRNA with cationic polyelectrolytes has been used in film and nanoparticle vectors for transfection. Herein, we combine the ability of particles to efficiently deliver siRNA with the ability of film polyelectrolyte multilayers to act locally.
View Article and Find Full Text PDFCells continuously exert forces on their environment and respond to changes in mechanical forces by altering their behaviour. Many pathologies such as cancer and fibrosis are hallmarked by dysregulation in the extracellular matrix, driving aberrant behaviour through mechanotransduction pathways. We demonstrate that substrate stiffness can be used to regulate cellular endocytosis of particles in a size-dependent fashion.
View Article and Find Full Text PDF