Triple-negative breast cancer (TNBC) is an aggressive heterogeneous disease with a divergent profile. It has an earlier tendency to form metastases and is associated with poor clinical outcomes due to the limited treatment options available. Heat-shock protein (HSP90) represents a potential treatment target as it promotes tumor progression and metastasis by modulating the maturation and stabilization of signal transduction proteins.
View Article and Find Full Text PDFTumor metastasis remains the cause of 90% of cancer-related deaths. Cancer stem cells (CSC) are thought to be responsible for the aggressive and metastatic nature of triple-negative breast cancers (TNBC), and new therapeutic strategies are being devised to target them. Flubendazole (FLU) is a widely used anthelmintic agent that also exhibits anticancer activity in several cancer types.
View Article and Find Full Text PDFAlthough trastuzumab provides significant clinical benefit for HER2-positive breast cancers, responses are limited by the emergence of resistance. Trastuzumab resistance is a multi-factorial phenomenon thought to arise from the presence of cancer stem cells and interactions between truncated p95HER2 and HER family members. Flubendazole (FLU) is a potent anthelmintic agent with an exceptional safety profile.
View Article and Find Full Text PDFUbiquitin-specific protease 34 (USP34) is a deubiquitinating enzyme that regulates Axin stability and plays a critical role in Wnt/β-catenin signaling. We sought to investigate the role of USP34 on epithelial-mesenchymal (EMT) induction and its effects on mammary epithelial stem cells. USP34 expression levels were relatively lower in MDA-MB-231 and 4T1 mesenchymal-like cells when compared to epithelial-like cells.
View Article and Find Full Text PDFIn the presence of copper (Cu), disulfiram (DSF) suppresses properties associated with cancer stem cells (CSCs) in breast cancer, but the mechanism of action is poorly understood. In the present study, we observed that DSF/Cu treatment induced apoptosis, mediated by caspase-3 activation in triple-negative breast cancer (TNBC) cells. DSF/Cu treatment also specifically targeted CSC-like cell populations, marked by the inhibition of ALDH1 activity, the suppression of CD44+/CD24-and CD49f+/CD24 + subpopulations, and the subsequent impairment of mammosphere formation.
View Article and Find Full Text PDFTriple-negative breast cancers (TNBC) often exhibit an aggressive phenotype. Disulfiram (DSF) is an approved drug for the treatment of alcohol dependence, but has also been shown to kill TNBC cells in a copper (Cu)-dependent manner. Exactly how this occurs has not been clearly elucidated.
View Article and Find Full Text PDFHER2-positive breast tumors are known to harbor cancer stem-like cell populations and are associated with an aggressive tumor phenotype and poor clinical outcomes. Disulfiram (DSF), an anti-alcoholism drug, is known to elicit cytotoxicity in many cancer cell types in the presence of copper (Cu). The objective of the present study was to investigate the mechanism of action responsible for the induction of apoptosis by DSF/Cu and its effect on cancer stem cell properties in HER2-positive breast cancers in vitro and in vivo.
View Article and Find Full Text PDF