Holographic displays have been a long-standing ambition for decades to realize true-to-life reconstruction. However, their practical adoption is hindered by their subpar image quality compared to two-dimensional displays, which is fundamentally limited by restricted spatial frequency bandwidth and artifacts. We address the limitation by using a symmetry-broken amplitude-only spatial light modulator, demonstrating image quality comparable to that of two-dimensional displays.
View Article and Find Full Text PDFThe widespread adoption of artificial neural networks for hologram synthesis can be attributed to their ability to improve image quality and reduce computational costs. In this study, we propose an alternative use of artificial neural networks to improve the optical efficiency of complex field encoding. The neural encoding significantly enhances the efficiency of amplitude-only SLMs, resulting in 2.
View Article and Find Full Text PDFWhile recent research has shown that holographic displays can represent photorealistic 3D holograms in real time, the difficulty in acquiring high-quality real-world holograms has limited the realization of holographic streaming systems. Incoherent holographic cameras, which record holograms under daylight conditions, are suitable candidates for real-world acquisition, as they prevent the safety issues associated with the use of lasers; however, these cameras are hindered by severe noise due to the optical imperfections of such systems. In this work, we develop a deep learning-based incoherent holographic camera system that can deliver visually enhanced holograms in real time.
View Article and Find Full Text PDFHolography is one of the most prominent approaches to realize true-to-life reconstructions of objects. However, owing to the limited resolution of spatial light modulators compared to static holograms, reconstructed objects exhibit various coherent properties, such as content-dependent defocus blur and interference-induced noise. The coherent properties severely distort depth perception, the core of holographic displays to realize 3D scenes beyond 2D displays.
View Article and Find Full Text PDFSub-Poisson field with much reduced fluctuations in a cavity can boost quantum precision measurements via cavity-enhanced light-matter interactions. Strong coupling between an atom and a cavity mode has been utilized to generate highly sub-Poisson fields. However, a macroscopic number of optical intracavity photons with more than 3 dB variance reduction has not been possible.
View Article and Find Full Text PDFSuperradiance is a quantum phenomenon emerging in macroscopic systems whereby correlated single atoms cooperatively emit photons. Demonstration of controlled collective atom-field interactions has resulted from the ability to directly imprint correlations with an atomic ensemble. Here we report cavity-mediated coherent single-atom superradiance: Single atoms with predefined correlation traverse a high-quality factor cavity one by one, emitting photons cooperatively with the atoms that have already gone through the cavity ( represents the number of atoms).
View Article and Find Full Text PDF