Biodegradable magnesium (Mg) alloys exhibit improved mechanical properties compared to degradable polymers while degrading in vivo circumventing the complications of permanent metals, obviating the need for surgical removal. This study investigated the safety and efficacy of Mg-Y-Zn-Zr-Ca (WZ42) alloy compared to non-degradable Ti6Al4V over a 14-week follow-up implanted as pins to fix a full osteotomy in rat femurs and as wires wrapped around the outside of the femurs as a cerclage. We used a fully load bearing model allowing implants to intentionally experience realistic loads without immobilization.
View Article and Find Full Text PDFAdditive manufacturing presents opportunities to treat bone defects using biomimetic tissue scaffolds. Past investigations have explored modulating scaffold mechanical properties through varying materials and geometric motifs. Herein, we applied the rotated plywood structure of bone tissue to a 3D printed scaffold with the goal of improving mechanical performance compared to an orthogonal mesh design commonly used in tissue scaffold applications.
View Article and Find Full Text PDFUnlabelled: The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H with an electrochemical H sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H transdermally above magnesium alloys implanted subcutaneously in mice.
View Article and Find Full Text PDFUnlabelled: A visual sensor for H was used to transdermally monitor H that originated from biodegrading magnesium (Mg) alloys implanted subcutaneously in mice. The visual sensor consisted of a thin film of H-sensitive material (MoO and Pd catalyst) coated on a flexible plastic sheet that was pressed against the mouse skin directly above the implant. Although the H levels permeating through the skin during the degradation process were very low, the sensor changed color to give a three dimensional (3D) visualization of H permeation.
View Article and Find Full Text PDFUnlabelled: 3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices.
View Article and Find Full Text PDFNanostructured ceramic particles, particularly, nanoparticles of calcium phosphate (CaP) remain an attractive option among the various types of non-viral gene delivery vectors studied because of their safety, biocompatibility, biodegradability, and ease of handling as well as their adsorptive capacity for DNA. We have accordingly developed an enhanced version of nanostructured calcium phosphates (NanoCaPs), by substituting known amounts of silicate for phosphate in the hydroxyapatite (HA) lattice (NanoSiCaPs). Results indicate that in addition to the excellent transfection levels exhibited by un-substituted NanoCaPs alone in vitro, an additional 20-50% increase in transfection is observed for NanoCaPs containing 8.
View Article and Find Full Text PDFUnlabelled: Monitoring the biodegradation process of magnesium and its alloys in vivo is challenging. Currently, this process is monitored by micro-CT and X-ray imaging in vivo, which require large and costly instrumentation. Here we report a simple and effective methodology to monitor the biodegradation process in vivo by sensing H2 transdermally above a magnesium sample implanted subcutaneously in a mouse.
View Article and Find Full Text PDFMagnesium phosphate implants may be used for bone void filling applications, potentially replacing traditionally studied bioceramics, which suffer from limited resorption and inferior mechanical properties compared to natural bone. In this study, amorphous and crystalline trimagnesium phosphates were synthesized and characterized utilizing a variety of analytical methods. In vitro solubility and cytotoxicity of the corresponding amorphous and crystalline phosphates were also analyzed.
View Article and Find Full Text PDFThis study introduces a class of biodegradable Mg-Y-Ca-Zr alloys novel to biological applications and presents evaluations for orthopedic and craniofacial implant applications. Mg-Y-Ca-Zr alloys were processed using conventional melting and casting techniques. The effects of increasing Y content from 1 to 4 wt.
View Article and Find Full Text PDFThe present work provides an assessment of 3-D printed iron-manganese biodegradable scaffolds as a bone scaffold material. Iron-based alloys have been investigated due to their high strength and ability to slowly corrode. Current fabrications of Fe-based materials generate raw material which must be machined into their desired form.
View Article and Find Full Text PDF