Publications by authors named "Daeho Han"

In this work, we present a generalization of the quantum trajectory surface hopping (QTSH) to multiple states and its implementation in the Libra package for nonadiabatic dynamics. In lieu of the ad hoc velocity rescaling used in many trajectory-based surface hopping approaches, QTSH utilizes quantum forces to evolve nuclear degrees of freedom continuously. It also lifts the unphysical constraint of enforcing the total energy conservation at the individual trajectory level and rather conserves the total energy at the trajectory ensemble level.

View Article and Find Full Text PDF

Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions.

View Article and Find Full Text PDF

In this work, we report our implementation of several independent-trajectory mixed-quantum-classical (ITMQC) nonadiabatic dynamics methods based on exact factorization (XF) in the Libra package for nonadiabatic and excited-state dynamics. Namely, the exact factorization surface hopping (SHXF), mixed quantum-classical dynamics (MQCXF), and mean-field (MFXF) are introduced. Performance of these methods is compared to that of several traditional surface hopping schemes, such as the fewest-switches surface hopping (FSSH), branching-corrected surface hopping (BCSH), and the simplified decay of mixing (SDM), as well as conventional Ehrenfest (mean-field, MF) method.

View Article and Find Full Text PDF

We present coupled equations of motion for correlated electron-nuclear dynamics for real-space and real-time propagation with a proper electron-nuclear correlation (ENC) from the exact factorization. Since the original ENC term from the exact factorization is non-Hermitian, the numerical instability arises as we propagate an electronic wave function. In this paper, we propose a Hermitian-type ENC term which depends on the electron density matrix and the nuclear quantum momentum.

View Article and Find Full Text PDF

Theoretical/computational description of excited state molecular dynamics is nowadays a crucial tool for understanding light-matter interactions in many materials. Here we present an open-source Python-based nonadiabatic molecular dynamics program package, namely PyUNIxMD, to deal with mixed quantum-classical dynamics for correlated electron-nuclear propagation. The PyUNIxMD provides many interfaces for quantum chemical calculation methods with commercial and noncommercial ab initio and semiempirical quantum chemistry programs.

View Article and Find Full Text PDF

Despite widespread interest in the amphiphilic polymeric micelles for drug delivery systems, it is highly desirable to achieve high loading capacity and high efficiency to reduce the side effects of therapeutic agents while maximizing their efficacy. Here, we present a novel hydrophobic epoxide monomer, cyclohexyloxy ethyl glycidyl ether (CHGE), containing an acetal group as a pH-responsive cleavable linkage. A series of its homopolymers, poly(cyclohexyloxy ethyl glycidyl ether)s (PCHGEs), and block copolymers, poly(ethylene glycol)--poly(cyclohexyloxy ethyl glycidyl ether)s (PEG--PCHGE), were synthesized via anionic ring-opening polymerization in a controlled manner.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfdlgn703go87t5skirrh7q806sp5hqqn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once