Publications by authors named "Dae-hoon Lee"

Plasma-induced methane pyrolysis is a promising hydrogen production method. However, few studies have focused the decomposition of pure methane as a discharge gas. Herein, a rotating gliding arc reactor was used for the conversion of methane (discharge gas and feedstock) into hydrogen and solid carbon.

View Article and Find Full Text PDF

Background: Recent intravesical administration of adenoviral vectors, either as a single injection or in combination with immune checkpoint inhibitors, exemplified by cretostimogene grenadenorepvec and nadofaragene firadenovec, has demonstrated remarkable efficacy in clinical trials for non-muscle invasive bladder cancer. Despite their ability to induce an enhanced immune reaction within the lesion, the intracellular survival signaling of cancer cells has not been thoroughly addressed.

Methods: An analysis of the prognostic data revealed a high probability of therapeutic efficacy with simultaneous inhibition of mTOR and STAT3.

View Article and Find Full Text PDF

Sarcopenia, the progressive decline in skeletal muscle mass and function, is observed in various conditions, including cancer and aging. The complex molecular biology of sarcopenia has posed challenges for the development of FDA-approved medications, which have mainly focused on dietary supplementation. Targeting a single gene may not be sufficient to address the broad range of processes involved in muscle loss.

View Article and Find Full Text PDF

Cartilage defects can be difficult to heal, potentially leading to complications such as osteoarthritis. Recently, a tissue engineering approach that uses scaffolds and growth factors has been proposed to regenerate new cartilage tissues. Herein, we investigated the application of hyaluronic acid (HA) gel loaded with transforming growth factor-beta 3 (TGF-β3) for enhanced cartilage regeneration.

View Article and Find Full Text PDF

Objective: The patient with electrically injured myelopathy showed mild motor weakness without somatosensory pathway abnormalities. Few reports have been reported on the pathophysiological mechanisms of electrically injured myelopathy, and there is controversy about the exact pathological causes. This study aimed to investigate the ultrastructural changes in the electron microscopic findings of electrical spinal cord injury.

View Article and Find Full Text PDF

Collagen, with low antigenicity and excellent cell adhesion, is a biomaterial mainly used for regenerating bone, cartilage, and skin, owing to its biocompatibility and biodegradability. Results from a previous study confirmed that a scaffold mixed with duck feet-derived collagen (DC) and Poly(lactic-co-glycolic acid) (PLGA) reduced inflammatory reaction and increased bone regeneration. To develop an optimal bone substitute we included hydroxyapatite (HAp), a key osteoconductive material, in a DC and PLGA mixture.

View Article and Find Full Text PDF

Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death.

View Article and Find Full Text PDF

Objectives: There have been few studies to date on the residual effect of bisphosphonate. This study investigated the radiographic changes of mandibular cortical thickness upon bisphosphonate drug holiday.

Materials And Methods: This retrospective study includes 36 patients diagnosed with MRONJ (medication-related osteonecrosis of the jaw) at Ajou University Dental Hospital in 2010-2021.

View Article and Find Full Text PDF
Article Synopsis
  • Lysyl-tRNA synthetase (KARS1) interacts with the laminin receptor (67LR) at the plasma membrane, a relationship that becomes more pronounced in metastatic conditions, but its dynamics were previously unexplored.
  • This study aimed to locate KARS1 and 67LR in epithelial ovarian cancer (EOC) and analyze how their expression changes with EOC progression and treatment with the inhibitor BC-K01, along with assessing BC-K01's effectiveness with paclitaxel.
  • Results indicated that high levels of KARS1 and 67LR correlate with poorer patient outcomes in EOC, while BC-K01 treatment reduced tumor size and growth and inhibited the KARS1-67LR interaction, resulting in overall
View Article and Find Full Text PDF

Plasma-assisted nitrogen fixation is a promising sustainable and clean alternative to the classical Haber-Bosch process. However, the high energy consumption and low production rate of plasma-assisted nitrogen fixation limit its application. This study shows that the non-thermal (non-equilibrium) enhancement of the arc plasma significantly reduces the energy consumption of nitrogen fixation.

View Article and Find Full Text PDF

To improve the mechanical properties of collagen hydrogels, which are widely utilized as biomaterials, post-cross-linking of collagen hydrogels was performed using polyrotaxane (PRX) as a cross-linker. Herein, carboxymethyl group-modified PRXs (CMPRs) composed of carboxymethylated α-cyclodextrins (α-CDs) threaded along poly(ethylene glycol) (PEG) capped with bulky stoppers were used to cross-link via reaction with the amino groups in the collagen. Four series of CMPRs with different α-CD threading ratios and axle PEG molecular weights were used for the post-cross-linking of the collagen hydrogels to verify the optimal CMPR chemical compositions.

View Article and Find Full Text PDF

Collagen, a natural biomaterial derived from animal tissues, has attracted the attention of biomedical material researchers because of its excellent cell affinity and low rejection . In this study, collagen was extracted using livestock by-product flippers, and an experiment was performed to assess its application as a scaffold for bone tissue implantation. For this purpose, we fabricated 2%, and 3% duck's feet derived collagen (DC) sponges.

View Article and Find Full Text PDF

Wound recovery close to the function of the native skin is the goal of wound healing. In this study, we prepared foam dressings (FDs; 2-GHC-FD-1-9, 5-GHC-FD-1-9, and 10-GHC-FD-1-9) composed of various concentrations of gelatin, hyaluronic acid, and carboxymethyl chitosan, which are chemically interconnected through amide bond formation, for evaluating wound healing. Tensile and cell proliferation tests showed that 2-GHC-FD-1-9 are suitable for wound dressing.

View Article and Find Full Text PDF

A gellan gum (GG) hydrogel must demonstrate a number of critical qualities-low viscosity, degradability, desirable mechanical properties, anti-swelling properties, and biocompatibility-in order to be regarded as suitable for retinal pigment epithelium (RPE) regeneration. In this study, we investigated whether the application of an eggshell membrane (ESM) to a GG hydrogel improved these critical attributes. The crosslinking of the ESM/GG hydrogels was most effectively reduced, when a 4 /% ESM was used, leading to a 40% less viscosity and a 30% higher degradation efficiency than a pure GG hydrogel.

View Article and Find Full Text PDF

Activated carbon has been extensively utilized to adsorb pollutants generated by industrial activities. There have been many attempts to efficiently produce activated carbon from spent coffee grounds in the field of environmental technology. In this study, the feasibility of the novel production of activated carbon from coffee ground waste using a plasma jet was evaluated.

View Article and Find Full Text PDF

Purpose: Periodontitis is characterised by inflammation of periodontium and alveolar bone loss. Gardenia jasminoides is reported to have anti-inflammatory effects. In this study, we investigated the effects of aqueous extract of G.

View Article and Find Full Text PDF

The cytocompatibility of biological and synthetic materials is an important issue for biomaterials. Gelatin hydrogels are used as biomaterials because of their biodegradability. We have previously reported that the mechanical properties of gelatin hydrogels are improved by cross-linking with polyrotaxanes, a supramolecular compound composed of many cyclic molecules threaded with a linear polymer.

View Article and Find Full Text PDF

Tough mechanical properties are generally required for tissue substitutes used in regeneration of damaged tissue, as these substitutes must be able to withstand the external physical force caused by stretching. Gelatin, a biopolymer derived from collagen, is a biocompatible and cell adhesive material, and is thus widely utilized as a component of biomaterials. However, the application of gelatin hydrogels as a tissue substitute is limited owing to their insufficient mechanical properties.

View Article and Find Full Text PDF

The proliferation of natural gas production had led to increased utilization of methane as a raw material for chemicals. The most significant bottleneck in this process is the high activation energy of methane. This paper reports the direct conversion of methane to acetylene in a novel rotating arc driven by AC electrical power.

View Article and Find Full Text PDF

Background: Extracts derived from natural products have been used to produce health supplements or therapeutic agents in oriental medicine. Although these extracts contain various bioactive compounds, their applications are generally limited to a few previously known diseases. To effectively expand their use for the treatment of other conditions, systematic analysis should be conducted for repurposing.

View Article and Find Full Text PDF

This paper describes utilization of dielectric barrier discharge (DBD) plasma interaction with impregnated surface nano-particles for plasma applications. The plasma generation characteristics on DBD plasma actuator and packed-bed reactor are investigated with unexpected objects as impregnated catalysts. The streamer generation of DBD plasma is influenced by different surface nano-particles of the impregnated catalyst between the discharge gaps.

View Article and Find Full Text PDF

There is a significant rise in the bone grafts demand worldwide to treat bone defects owing to continuous increase in conditions such as injury, trauma, diseases, or infections. Therefore, development of three-dimensional scaffolds has evolved as a reliable technology to address the current limitations for bone tissue regeneration. Mimicking the natural bone, in this study, we have designed a silk fibroin/hydroxyapatite scaffold inlaid with a bioactive phytochemical (quercetin) at different concentrations for promoting osteogenesis, especially focusing on quercetin ability for enhancing bone health.

View Article and Find Full Text PDF

This paper describes modification of catalyst surface from interaction between catalysts and dielectric barrier discharge (DBD) plasma. Ru/γ–Al₂O₃ catalyst was exposed to DBD plasma for CO₂ methanation and CH₄ direct conversion reactions. Parameters related to the modification of catalyst surface were investigated by SEM and EDS analysis.

View Article and Find Full Text PDF

This paper describes the performance degradation of impregnated catalyst in the dielectric barrier discharge (DBD) plasma-assisted methane conversion process. Mn and Ni mixed copper-zinc catalysts, and bare γ-Al2O3 support were exposed to the DBD plasma generated at 1 kHz and 9 kV under CH4 direct conversion for 4 hours. The performance degradation due to the surface damage of the catalyst by the plasma was investigated by SEM analysis.

View Article and Find Full Text PDF

Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated.

View Article and Find Full Text PDF