Publications by authors named "Dae-Su Yee"

High-speed frequency-domain terahertz (THz) coherence tomography is demonstrated using frequency sweeping of continuous-wave THz radiation and beam steering. For axial scanning, THz frequency sweeping with a kHz sweep rate and a THz sweep range is executed using THz photomixing with an optical beat source consisting of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using coherent homodyne detection employing signal averaging for noise reduction and used as axial-scan data via fast Fourier transform.

View Article and Find Full Text PDF

We present a new technical implementation of a high-speed broadband frequency sweep of continuous-wave terahertz (THz) radiation. THz frequency sweeping with a kHz sweep rate and a THz sweep range is implemented using THz photomixing in which an optical beat source consists of a wavelength-swept laser and a distributed feedback laser diode. During the frequency sweep, frequency-domain THz interferograms are measured using the coherent homodyne detection employing signal averaging for noise reduction, which can give time-of-flight information via fast Fourier transform.

View Article and Find Full Text PDF

High-speed terahertz (THz) reflection three-dimensional (3D) imaging is demonstrated using electronically-controlled optical sampling (ECOPS) and beam steering. ECOPS measurement is used for scanning an axial range of 7.8 mm in free space at 1 kHz scan rate while a transverse range of 100 × 100 mm(2) is scanned using beam steering instead of moving an imaging target.

View Article and Find Full Text PDF

We demonstrate high-speed terahertz (THz) reflection three-dimensional (3D) imaging based on electronically controlled optical sampling (ECOPS). ECOPS enables scanning of an axial range of 9 mm in free space at 1 kHz. It takes 80 s to scan a transverse range of 100 mm × 100 mm along a zigzag trajectory that consists of 200 lines using translation stages.

View Article and Find Full Text PDF

We propose a rapidly frequency-swept optical beat source for continuous wave (CW) THz generation using a wavelength swept laser and a fixed distributed feedback (DFB) laser. The range of the sweeping bandwidth is about 17.3 nm (2.

View Article and Find Full Text PDF

We demonstrate high-speed terahertz (THz) time-domain spectroscopy based on electronically controlled optical sampling (ECOPS). The ECOPS system utilizes two synchronized Ti:sapphire femtosecond lasers with a 100 MHz repetition frequency. The time delay between the two laser pulses is demonstrated to be rapidly swept at a scan rate of 1 kHz on a time delay window of 77 ps by using an external offset voltage applied to a locking electronics.

View Article and Find Full Text PDF

We demonstrate a terahertz (THz) spectrum analyzer based on frequency and power measurement. A power spectrum of a continuous THz wave is measured through optical heterodyne detection using an electromagnetic THz frequency comb and a bolometer and power measurement using a bolometer with a calibrated responsivity. The THz spectrum analyzer has a frequency precision of 1x10(-11), a frequency resolution of 1Hz, a frequency band up to 1.

View Article and Find Full Text PDF

We propose a widely tunable dual-wavelength Erbium-doped fiber laser that uses two micro-heater-integrated Fabry-Perot laser diodes (FP-LDs) and two fiber Bragg gratings (FBGs) for tunable continuous-wave (CW) terahertz (THz) radiation. Each wavelength can be independently tuned by using an FP-LD and an FBG. The wavelength fine tuning is achieved by simultaneously applying current to the micro-heater on the FP-LD and strain to the FBG.

View Article and Find Full Text PDF

We demonstrate pulse-echo mode terahertz (THz) reflectance tomography, where scattered THz waveforms are measured using a high-resolution asynchronous-optical-sampling THz time domain spectroscopy (AOS THz-TDS) technique, and 3-D tomographic reconstruction is accomplished using a compressed sensing approach. One of the main advantages of the proposed system is a significant reduction of acquisition time without sacrificing the reconstruction quality, thanks to the sufficient incoherency in the pulse-echo mode-sensing matrix and the fast sampling scheme in AOS THz-TDS.

View Article and Find Full Text PDF

We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section.

View Article and Find Full Text PDF

We obtain a heterodyne beat signal between an iodine-stabilized He-Ne laser at 633 nm and a low power comb mode of an optical frequency synthesizer with an enhanced signal-to-noise ratio (SNR) up to approximately 35 dB. This is accomplished by the adoption of a fiber coupler and the reduction of the shot noise induced by adjacent comb modes. SNR is improved more than 15 dB compared with that of conventional methods.

View Article and Find Full Text PDF

Multisection semiconductor lasers for optical microwave generation have been fabricated that consist of a loss-coupled distributed feedback (LC-DFB), a phase control, and an amplifier section. High-frequency self-pulsations are generated according to the concept of a single-mode laser with short optical feedback. The effect of the optical feedback via the phase control and the amplifier section on the self-pulsation is apparently shown as a result of the superior single-mode characteristic of the LC-DFB section.

View Article and Find Full Text PDF