The Gustilo IIIB tibiofibular fractures often result in long bone loss and extensive soft tissue defects. Reconstruction of these complex wounds is very challenging, especially when it includes long bone grafts, because the donor site is limited. We describe our experience using a set of chimeric ipsilateral vascularized fibula grafts with a thoracodorsal artery perforator free flap to reconstruct the traumatic tibia defects.
View Article and Find Full Text PDFTreatment of post-traumatic complex bone infection is very challenging. The two principal bone reconstruction approaches are the single-stage vascularized bone graft technique and the two-stage induced membrane technique (IMT). Here we introduce a modified 2-stage induced membrane technique (MIMT) for complex long bone infection with a major bone defect and a concomitant severe soft tissue lesion.
View Article and Find Full Text PDFBackground: Simple and safe fingertip reconstruction methods involve the use of local neurovascular islands flaps that can preserve functional length and sensitivity, and reconstruction with skin of the same texture. However, techniques involving flaps have numerous drawbacks and do not satisfy all the requirements for fingertip reconstruction. A particular problem is the persistence of contracture deformity due to lack of full flap advancement.
View Article and Find Full Text PDFRad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency.
View Article and Find Full Text PDFG9a is a lysine methyltransferase (KMTase) for histone H3 lysine 9 that plays critical roles in a number of biological processes. Emerging evidence suggests that aberrant expression of G9a contributes to tumor metastasis and maintenance of a malignant phenotype in cancer by inducing epigenetic silencing of tumor suppressor genes. Here, we show that G9a regulates Sox2 protein stability in breast cancer cells.
View Article and Find Full Text PDFHomologous recombination (HR) maintains genomic integrity against DNA replication stress and deleterious lesions, such as double-strand breaks (DSBs). Rad51 recombinase is critical for HR events that mediate the exchange of genetic information between parental chromosomes in eukaryotes. Additionally, Rad51 and HR accessory factors may facilitate replication fork progression by preventing replication fork collapse and repair DSBs that spontaneously arise during the normal cell cycle.
View Article and Find Full Text PDFLefty expression has been recognized as a stemness marker because Lefty is enriched both in undifferentiated embryonic stem cells (ESCs) and in blastocysts. Here, we examined the function of Lefty1 and Lefty2 in the maintenance of self-renewal and pluripotency of mouse ESCs (mESCs). Suppression of Lefty1 or Lefty2 expression in mESCs did not alter the self-renewal properties of mESCs under nondifferentiating conditions, but suppression of these genes did affect Smad2 phosphorylation and differentiation.
View Article and Find Full Text PDFTFIIS is a transcription elongation factor conserved in frog, mouse and human. Recently, knockdown of TCEA1, the most well-characterized isoform of TFIIS, by RNA silencing was reported to inhibit cancer cell proliferation and induce apoptosis in breast, lung and pancreatic cancer cell lines through activation of p53 (Hubbard et al., 2008 [1]).
View Article and Find Full Text PDFMalignant gliomas are the most common primary brain tumor in adults. A number of genes have been implicated in glioblastoma including mutation and deletion of PTEN. PTEN is a regulator of PI3K-mediated Akt signaling pathways and has been recognized as a therapeutic target in glioblastoma.
View Article and Find Full Text PDFFibroblast growth factor (FGF) signaling is implicated in the control of pluripotency and lineage differentiation of both human and mouse embryonic stem cells (mESCs). FGF4 dependent stimulation of ERK1/2 signaling triggers transition of pluripotent ESCs from self-renewal and lineage commitment. In this study, Sprouty 1 (Spry1) expression was observed in undifferentiated mESCs, where it modulated ERK1/2 activity.
View Article and Find Full Text PDF