Publications by authors named "Dae-Hwan Jung"

Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.

View Article and Find Full Text PDF

We investigate the effect of functional groups of pyrene molecules on the electrical sensing performance of single-walled carbon nanotubes (SWNTs) based DNA biosensor, in which pyrenes with three different functional groups of carboxylic acid (Py-COOH), aldehyde (Py-CHO) and amine (Py-NH2) are used as linker molecules to immobilize DNA on the SWNT films. UV/Visible absorption spectra results show that all of the pyrene molecules are successfully immobilized on the SWNT surface via pi-pi stacking interaction. Based on fluorescence analysis, we show that the amide bonding of amine terminated DNA via pyrene containing carboxylic groups is the most efficient to immobilize DNA on the nanotube film.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon nanotubes (CNTs) are being explored as transparent conducting films because of their excellent conductivity, transparency, and flexibility.
  • Despite this potential, their performance still falls short compared to traditional materials like indium tin oxide (ITO), mainly due to issues like contact resistances and the semi-conducting nature of the nanotubes.
  • The review highlights recent improvements through techniques such as chemical doping and hybridization, focusing on how these modified CNT networks can advance the development of transparent conducting films.
View Article and Find Full Text PDF

We developed a novel method of vertical alignment of SWNTs using a single-step process for the simultaneous vertical alignment of the SWNTs by a magnetic field and the fixation of their alignment by means of the direct evaporation of the films. We fabricated Fe-oxide/SWNT samples that are reacted by iron-oleate complex, oleic acid and cut SWNTs in 1-octadecene. The Fe-oxide/SWNT samples are dispersed in N,N-dimethylformamide and the resulting solution was deposited on an ITO glass substrate using the spraying method with magnetic field.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) have been chemically attached with high density onto a patterned substrate. To form the SWNT pattern, the substrate was treated with acid-labile group protected amine, and an amine prepattern was formed using a photolithographic process with a novel polymeric photoacid generator (PAG). The polymeric PAG contains a triphenylsulfonium salt on its backbone and was synthesized to obtain a PAG with enhanced efficiency and ease of spin-coating onto the amine-modified glass substrate.

View Article and Find Full Text PDF

DNA oligonucleotides were covalently immobilized to prepatterned single-walled carbon nanotube (SWNT) multilayer films by amidation. SWNT multilayer films were constructed via consecutive condensation reactions creating stacks of functionalized SWNT layers linked together by 4,4'-oxydianiline. Aminated- or carboxylated-DNA oligonucleotides were covalently immobilized to the respective carboxylated or aminated SWNT multilayer films through amide bond formation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride.

View Article and Find Full Text PDF

Carbon nanotube conducting arrays were constructed via consecutive amidation reactions with the aid of a linker molecule and a condensation agent on a patterned amine-terminated glass substrate. The electrical resistivity of the nanotube films was sensitive to the degree of coverage for the substrate, making it possible to tailor nanotube multilayers suitable for use in micro- or nanoscale electronic devices and circuits.

View Article and Find Full Text PDF