Recently, increasing interest has been focused on one-dimensional (1 D) magnetic nanomaterials that have significant anisotropic electromagnetic parameters and size effects that can be used to achieve improved shielding efficiency. In this study, the simple, low-cost and scalable synthesis of FeCo nanofibers is demonstrated by combining an electrospinning process with sequential thermal treatment involving calcination in air followed by reduction in H2 atmosphere. A citric acid has an influence on the morphology of the electrospun product.
View Article and Find Full Text PDFIn this study, TiO2 nanofibers with a high aspect ratio and a large specific surface area were synthesized using the electrospinning technique, and the effect of calcination temperature on their crystal structure, diameter, specific surface area and photocatalytic activity was systematically investigated. The electrospun, as-prepared PVP/TTIP nanofibers were several tens of micrometers in length with a diameter of 74 nm. TiO2 nanofibers with an average diameter of 50 nm were prepared after calcination at various temperatures.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2013
Ultra-long NiFe2O4 nanofibers were synthesized by a simple electrospinning process followed by thermal treatment. The NiFe2O4 nanofibers are polycrystalline with average diameter of 218 nm and lengths up to several millimeters. When evaluated for their lithium-storage properties, the electrospun NiFe2O4 nanofibers exhibit a high specific capacity that can exceed 660 mA h g(-1) after 100 cycles, along with enhanced cycling stability.
View Article and Find Full Text PDFFe3O4 nanoparticles have been used for hyperthermia treatment in an attempt to overcome various problems. When using hyperthermia treamtment, it is critical to control the surface modification of the particles. Magnetic nanoparticles tend to aggregate due to strong magnetic dipole--dipole attractions.
View Article and Find Full Text PDFLiposome encapsulating Fe3O4 (liposome complexes) has been prepared for targeting a drug to a specific organ, as well as for MRI (magnetic resonance imaging) contrast agents. The objective of the present work was to investigate the Fe3O4 properties and the effects of chitosan concentration on the characteristics of chitosan-coated liposome complexes. They were characterized by DLS, FT-IR, XRD, VSM, UV-Vis spectrometer, TEM and phase-contrast microscopy.
View Article and Find Full Text PDFPhospholipid vesicles encapsulating magnetic nanoparticles (liposome complexes) have been prepared for targeting a drug to a specific organ using a magnetic force, as well as for local hyperthermia therapy. Liposome complexes are also an ideal platform for use as contrast agents of magnetic resonance imaging (MRI). We describe the preparation and characterization of liposomes containing magnetite.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2011
Recently, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) have become serious problems due to the growth of electronic device and next generation telecommunication. It is necessary to develop new electromagnetic wave absorbing material to overcome the limitation of electromagnetic wave shielding materials. The EMI attenuation is normally related to magnetic loss and dielectric loss.
View Article and Find Full Text PDF