Publications by authors named "Dae-Geun Choi"

Nanopatterned halide perovskites have emerged to improve the performance of optoelectronic devices by controlling the crystallographic and optical properties via morphological modification. However, the correlation between the photophysical property and morphology transformation in nanopatterned perovskite films remains elusive, which hinders the rational design of nanopatterned halide perovskites for optoelectronic devices. In this study, we employed nanoimprinting lithography on a perovskite film to exert a precise control over grain growth and manipulate electronic structures at the level of individual grains.

View Article and Find Full Text PDF

A mid-infrared label-free immunoassay-based biosensor is an effective device to help identify and quantify biomolecules. This biosensor employs a surface-enhanced infrared absorption spectroscopy, which is a highly potent sensing technique for detecting minute quantities of analytes. In this study, a biosensor was constructed using a metamaterial absorber, which facilitated strong coupling effects.

View Article and Find Full Text PDF
Article Synopsis
  • * The cover features a hexagonal array of nanocones, created through a process called nanoimprinting, which significantly improves light absorption when attached to a glass cover.
  • * Testing showed a 2-13% increase in power conversion efficiency at angles from 0 to 60 degrees, and simulations confirmed that this design remains effective across different seasons in South Korea.
View Article and Find Full Text PDF

An infrared plasmonic metamaterial absorber with a nanogap was numerically and experimentally investigated as a refractive index sensor. We experimentally demonstrated large enhancements of both sensitivity (approximately 1091 nm/refractive index unit) and figure of merit (FOM*; approximately 273) owing to the nanogap formation in the metamaterial absorber to achieve perfect absorption (99%). The refractive index sensing platform was fabricated by producible nanoimprint lithography and isotropic dry etching processes to have a large area and low cost while providing a practical solution for high-performance plasmonic biosensors.

View Article and Find Full Text PDF

We report on a quasi-three-dimensional (3D) plasmonic nanowell array with high structural uniformity for molecular detection. The quasi-3D plasmonic nanowell array was composed of periodic hexagonal Au nanowells whose surface is densely covered with gold nanoparticles (Au NPs), separated by an ultrathin dielectric interlayer. The uniform array of the Au nanowells was fabricated by nanoimprint lithography and deposition of Au thin film.

View Article and Find Full Text PDF

Tailoring the spectrum of thermal radiation at high temperatures is a central issue in the study of thermal radiation harnessed energy resources. Although bulk metals with periodic cavities incorporated into their surfaces provide high emissivity, they require a complicated micron metal etch, thereby precluding reliable, continuous operation. Here, we report thermally stable, highly emissive, ultrathin (<20 nm) tungsten (W) radiators that were prepared in a scalable and cost-effective route.

View Article and Find Full Text PDF

One of the main challenges in the widespread utilization of localized plasmon resonance-based biosensors is the fabrication of large-area and low-cost plasmonic nanostructures. In this work, we fabricated large-area and low-cost complementary plasmonic biosensors such as nanohole and nanodisk arrays using dual nanotransfer printing (NTP) with a single metal deposition and a single reusable mold. The suspended nanohole arrays and the suspended nanodisk arrays were fabricated using the subsequent dry etching process.

View Article and Find Full Text PDF

Nanopatterns of functional materials have successfully led innovations in a wide range of fields, but further exploration of their full potential has often been limited because of complex and cost-inefficient patterning processes. We here propose an additive nanopatterning process of functional materials from solution route using selective wetting phenomenon. The proposed process can produce nanopatterns as narrow as 150 nm with high yield over large area at ultrahigh process speed, that is, the speed of solution dragging, of up to ca.

View Article and Find Full Text PDF

A novel method for fabricating 3D metallic nanostructures to be used in polarized color filters based on nanoimprint lithography, electron-beam evaporation, and nanowelding is proposed. The shape of the nanostructures can be controlled by adjusting the temperature for the nanowelding process. Ag nanowires deposited on polymer patterns are accumulated by the nanowelding process to build up diverse 3D nanostructures.

View Article and Find Full Text PDF

Many high-resolution patterning techniques have been developed to realize nano- and microscale applications of electric devices, sensors, and transistors. However, conventional patterning methods based on photo or e-beam lithography are not employed to fabricate optical elements of high aspect ratio and a sub-100 nm scale due to the limit of resolution, high costs and low throughput. In this study, covalent bonding-assisted nanotransfer lithography (CBNL) was proposed to fabricate various structures of high resolution and high aspect ratio at low cost by a robust and fast chemical reaction.

View Article and Find Full Text PDF

We demonstrate an infrared broadband metasurface absorber that is suitable for increasing the response speed of a microbolometer by reducing its thermal mass. A large fraction of holes are made in a periodic pattern on a thin lossy metal layer characterised with a non-dispersive effective surface impedance. This can be used as a non-resonant metasurface that can be integrated with a Salisbury screen absorber to construct an absorbing membrane for a microbolometer that can significantly reduce the thermal mass while maintaining high infrared broadband absorption in the long wavelength infrared (LWIR) band.

View Article and Find Full Text PDF

In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing.

View Article and Find Full Text PDF

In order to improve their performance for various applications, a facile method for the wafer-scale fabrication of micro/nano-patterned vertical silicon (Si) structures such as silicon nanowires (SiNWs), silicon nanorods (SiNRs), and porous silicon (p-Si) was developed. The method is based on the combination of lithography techniques (photolithography, thermal nano-imprint lithography, nanosphere lithography) and wet chemical etching (electro-chemical etching, metal-assisted chemical etching) processes. Micro-patterned p-Si with various pore diameters from 30 nm to 1.

View Article and Find Full Text PDF

Patterning of metal nanowires (NWs) is vital for the fabrication of NW-based, high-performance devices such as sensors, transparent conducting electrodes, and optoelectronics. However, the majority of existing patterning methods require complex and expensive technologies. For this reason, we report for the first time a facile and quick patterning method of silver (Ag) NWs using a magnetic printing method.

View Article and Find Full Text PDF

Unlabelled: In recent years, inorganic/organic hybrid solar cell concept has received growing attention for alternative energy solution because of the potential for facile and low-cost fabrication and high efficiency. Here, we report highly efficient hybrid solar cells based on silicon nanowires (SiNWs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (

Pedot: PSS) using transfer-imprinted metal mesh front electrodes. Such a structure increases the optical absorption and shortens the carrier transport distance, thus, it greatly increases the charge carrier collection efficiency.

View Article and Find Full Text PDF

The vertical integration of 1D nanostructures onto the 2D substrates has the potential to offer significant performance gains to flexible electronic devices due to high integration density, large surface area, and improved light absorption and trapping. A simple, rapid, and low temperature transfer bonding method has been developed for this purpose. Ultrasonic vibration is used to achieve a low temperature bonding within a few seconds, resulting in a polymer-matrix-free, electrically conducting vertical assembly of silicon nanowires (SiNWs) with a graphene/PET substrate.

View Article and Find Full Text PDF

Fabrication of ZnO nanostructure via direct patterning based on sol-gel process has advantages of low-cost, vacuum-free, and rapid process and producibility on flexible or non-uniform substrates. Recently, it has been applied in light-emitting devices and advanced nanopatterning. However, application as an electrically conducting layer processed at low temperature has been limited by its high resistivity due to interior structure.

View Article and Find Full Text PDF

Polymer solar cells with enhanced initial cell performances and long-term stability were fabricated by performing a simple dry transfer of a hole extraction layer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)] onto an indium tin oxide (ITO) substrate. Due to the very flat surface of the polyurethane acrylate/polycarbonate (PUA/PC) film, which was used as a mold and resembled the surface of the original substrate (silicon wafer), the transferred layer had a very smooth surface morphology, resulting in enhancement of the interfacial characteristics. The work function of the PEDOT:PSS layer and the morphology of bulk hetero junction (BHJ) layer were tuned by controlling the position of PSS enrichment in the PEDOT:PSS layer using the dry transfer.

View Article and Find Full Text PDF

Uniform metal nanomesh structures are promising candidates that may replace of indium-tin oxide (ITO) in transparent conducting electrodes (TCEs). However, the durability of the uniform metal mesh has not yet been studied. For this reason, a comparative analysis of the durability of TCEs based on pure Ag and AgNi nanomesh, which are fabricated by using simple transfer printing, is performed.

View Article and Find Full Text PDF

Silicon nanowires (SiNWs) for use as lithium-ion battery (LIB) anode materials have been studied for their one-dimensional (1D) properties and ability to accommodate large volume changes and avoid rapid capacity fading during cycling. Although the vertical transfer of SiNWs from their original substrate onto a conducting electrode is very important, to date, there has been no report of a direct integration method without polymer binders. Here, we propose for the first time a vertical transfer method for SiNWs grown on a Si substrate directly to the current-collecting electrode without using a polymer adhesive for the use as a binder-free LIB anode.

View Article and Find Full Text PDF

A large theoretical charge storage capacity along with a low discharge working potential renders silicon a promising anode material for high energy density lithium ion batteries. However, up to 400% volume expansion during charge-discharge cycling coupled with a low intrinsic electronic conductivity causes pulverization and fracture, thus inhibiting silicon's widespread use in practical applications. We report herein on a low cost approach to fabricate hybrid silicon nanowire (SiNW)/graphene nanostructures that exhibit enhanced cycle performance with the capability of retaining more than 90% of their initial capacity after 50 cycles.

View Article and Find Full Text PDF

We present a novel method of fabricating superhydrophobic and superoleophobic surfaces with nanoscale reentrant curvature by nanotransfer molding and controlled wet etching of the facile undercut. This method produces completely ordered re-entrant nanostructures and prevents capillary-induced bundling effects. The mushroom-like, re-entrant, overhanging structure demonstrates superhydrophobic and superoleophobic characteristics, as tested by water droplet bouncing and contact angle measurements, and has high transparency on a flexible substrate.

View Article and Find Full Text PDF

For the first time, we describe a novel cost- and time-effective vacuum-free process to fabricate bulk-heterojunction (BHJ) organic photovoltaics (OPVs) via layer-by-layer selective stamping transfer of all layers. By controlling the surface properties of polyurethane acrylate (PUA) stamping molds with ultraviolet (UV)-ozone (UVO) exposure, poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS), BHJ layer, and metal cathode were uniformly transferred layer by layer onto each of the bottom layers. Among several interfaces between each layer, we found that the interface between the active layer and metal cathode is a critical factor in obtaining conventional device-like efficiency.

View Article and Find Full Text PDF

Direct transfer printing of functional materials has been employed in the development of sensors, displays, and energy-harvesting devices. The transfer process can be applied advantageously to depositions onto nonplanar and flexible surfaces at low temperatures. In this work, we fabricated free-standing nanowire arrays and nanomembranes on micrometer-scale trenches by nanotransfer molding.

View Article and Find Full Text PDF

We describe the fabrication of corrugated inorganic oxide surface via direct single step conformal nanoimprinting to achieve enhanced light extraction in light emitting diodes (LEDs). Nanoscale zinc oxide (ZnO) and indium tin oxide (ITO) corrugated layer were created on a nonplanar GaN LED surface including metal electrode using ultraviolet (UV) assisted conformal nanoimprinting and subsequent inductively coupled plasma reactive ion etching (ICP-RIE) treatment. The total output powers of the surface corrugated LEDs increased by 45.

View Article and Find Full Text PDF