Publications by authors named "Dae Joon Kang"

The oxygen evolution reaction (OER) is a critical challenge in electrocatalytic water splitting, hindered by high energy demands and slow kinetics. Polyoxometalates (POMs), recognized for their unique redox capabilities, structural archetypes, and molecular precision, are promising candidates for the oxygen evolution reaction (OER). Yet, their application is hindered by high water solubility, causing rapid degradation and efficiency loss under harsh OER conditions.

View Article and Find Full Text PDF

Nanopatterning driven by electrohydrodynamic (EHD) instability can aid in the resolution of the drawbacks inherent in conventional imprinting or other molding methods. This is because EHD force negates the requirement of physical contact and is easily tuned. However, its potential has not examined owing to the limited size of the pattern replica (several to tens of micrometers).

View Article and Find Full Text PDF

Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed.

View Article and Find Full Text PDF

We introduce an innovative method that facilitates precise control of high-quality molybdenum disulfide (MoS) growth, extending up to three layers, on a large scale. This scalable growth is realized by employing solution-based catalysts and precursors in conjunction with chemical vapor deposition (CVD). The catalyst not only diminishes the precursor's activation energy and melting temperature but also augments the overall reaction rate.

View Article and Find Full Text PDF

Electrohydrodynamic (EHD)-driven patterning is a pioneering lithographic technique capable of replicating and modifying micro/nanostructures efficiently. However, this process is currently restricted to conventional substrates, as it necessitates a uniform and robust electric field over a large area. Consequently, the use of nontraditional substrates, such as those that are flexible, nonflat, or have high insulation, has been notably limited.

View Article and Find Full Text PDF

Despite the prospects of electrohydrodynamic instability patterning (EHIP), poor process parameter controllability is a significant challenge in uniform large-scale nanopatterning. Herein, we introduce a EHIP process using an ultrahigh electric field (>10 V/m) to effectively accelerate the pattern growth evolution. Owing to the strong dependence on a temporal parameter (1/τ) of the field strength, our method not only reduces the completion time of pattern growth but also overcomes critical parametric restrictions on the pattern replication, thereby enhancing the replicated pattern quality in three dimensions.

View Article and Find Full Text PDF

This study reports a clean and damage-free transfer method that enables the ultrafast transfer of two-dimensional (2D) transition metal dichalcogenides (TMDs) onto desired substrates with a remarkably high yield. We employ a water-soluble sodium salt as both a transfer sacrificial layer for facile transfer and a catalytic layer for the growth of high-quality large-area MoSusing liquid-phase chemical vapor deposition via a catalyzed kinetic growth. We show that the pristine structural and electrical properties of the grown MoScan be reliably preserved by avoiding detrimental effects during the prolonged harsh-environment transfer process.

View Article and Find Full Text PDF

MoS, owing to its advantages of having a sheet-like structure, high electrical conductivity, and benign environmental nature, has emerged as a candidate of choice for electrodes of next-generation supercapacitors. Its widespread use is offset, however, by its low energy density and poor durability. In this study, to overcome these limitations, flower-shaped MoS/graphene heterostructures have been deployed as electrode materials on flexible substrates.

View Article and Find Full Text PDF

Electrohydrodynamic (EHD) instability patterning exhibits substantial potential for application as a next-generation lithographic technique; nevertheless, its development continues to be hindered by the lack of process parameter controllability, especially when replicating sub-microscale pattern features. In this paper, a new parametric guide is introduced. It features an expanded range of valid parameters by increasing the pattern growth velocity, thereby facilitating reproducible EHD-driven patterning for perfect nanopattern replication.

View Article and Find Full Text PDF

Metal sulfides are considered excellent materials for oxygen evolution reaction because of their excellent conductivity and high electrocatalytic activity. In this report, the NiS-CuS composites were prepared on copper foam (NiS-CuS-CF) using a facile synthetic strategy. The scanning electron microscopy results confirmed that the NiS nanoneedles were successfully grown on CuS nanoflakes, greatly increasing the active sites.

View Article and Find Full Text PDF

Interfacial microenvironment modulation has been proven to be a promising route to fabricate highly efficient catalysts. In this work, the lattice defect-rich NiS /MoS nanoflakes (NMS NFs) electrocatalysts are successfully synthesized by a simple strategy. Benefiting from the abundant lattice defects and modulated interfacial microenvironment between NiS and MoS , the prepared NMS NFs show superior catalytic activity for water splitting.

View Article and Find Full Text PDF

The outcomes of the study of plant surfaces, such as rice leaves or bamboo leaves, have led to extensive efforts being devoted to fabricating anisotropic arrays of micro/nanoscale features for exploring anisotropic droplet spreading. Nonetheless, precise engineering of the density and continuity of three-phase contact lines for anisotropic wetting remains a significant challenge without resorting to chemical modifications and costly procedures. In this work, we investigated secondary electrohydrodynamic instability in polymer films for producing secondary nanosized patterns between the micrometer-sized grooves by controlling the timescale parameter, 1/τ (>10 s).

View Article and Find Full Text PDF

High-performance thermal management materials are essential in miniaturized, highly integrated, and high-power modern electronics for heat dissipation. In this context, the large interface thermal resistance (ITR) that occurs between fillers and the organic matrix in polymer-based nanocomposites greatly limits their thermal conductive performance. Herein, through-plane direction aligned three-dimensional (3D) MXene/silver (Ag) aerogels are designed as heat transferring skeletons for epoxy nanocomposites.

View Article and Find Full Text PDF

The development of an effective mechanical to electrical energy conversion device and its functional integration with an energy storage device for self-powered portable gadgets are cutting-edge research fields. However, the generated power and the mechanical stability of these integrated devices are still not efficient to power up portable electronics. We fabricated a rectifier-free piezoelectric nanogenerator (NG) integrated with a supercapacitor (SC).

View Article and Find Full Text PDF

Porous photocatalysts have attracted significant attention for their large specific surface area, numerous surface catalytic active sites, and high photocatalytic activity. In this study, porous SrTiO₃/TiO₂ composites were successfully fabricated through a hydrothermal approach utilizing porous TiO₂ as a substrate. The as-synthesized SrTiO₃/TiO₂ composites were then characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, Brunauer-Emmett-Teller (BET), and ultraviolet-visible spectroscopy (UV-Vis) analysis.

View Article and Find Full Text PDF

We demonstrated a hybrid nanogenerator (NG) exploiting both piezoelectric and triboelectric effects induced from ZnO nanoflakes (NFs)/polydimethylsiloxane (PDMS) composite films through a facile, cost-effective fabrication method. This hybrid NG exhibited not only high piezoelectric output current owing to the enhanced surface piezoelectricity of the ZnO NFs but also high triboelectric output voltage owing to the pronounced triboelectrification of Au-PDMS contact, producing a peak-to-peak output voltage of ∼470 V, a current density of ∼60 μA·cm, and an average power density of ∼28.2 mW·cm.

View Article and Find Full Text PDF

Herein, we report the successful synthesis of poly(dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene (PDMS/ZnO NFs/3D Gr) heterostructures using Ni foams as the template substrate via a facile route, while adapting a rational material design for a high-performance energy-harvester application. The PDMS/ZnO NFs/3D Gr heterostructure-based hybrid energy harvester simultaneously exploits the piezoelectric effect and triboelectrification and shows peak-to-peak output voltages up to 122 V and peak-to-peak current densities up to 51 μA cm, resulting in an ultrahigh power density of 6.22 mW cm.

View Article and Find Full Text PDF

Large-area, high-quality bilayer graphene (BLG) has attracted great interest because of its immense potential for many viable applications. However, its growth is still greatly limited owing to its small size and low carrier mobility. In this article, we report the successful growth of large-area, high-quality AB-stacked BLG on hexagonal boron nitride (h-BN)/Pt foil by chemical vapor deposition (CVD).

View Article and Find Full Text PDF

In this work, a new approach to modifying poly(dimethylsiloxane) (PDMS) as a negative triboelectric material using graphene oxide (GO) and a sodium dodecyl sulfate (SDS) surfactant was reported. A porous PDMS@GO@SDS composite triboelectric nanogenerator (TENG) could deliver an output voltage and current of up to 438 V and 11 μA/cm, respectively. These values were 3-fold higher than those of the flat PDMS.

View Article and Find Full Text PDF

High-quality large-area graphene/h-BN vertical heterostructures are promising building blocks for many viable applications such as energy harvesting/conversion, electronics and optoelectronics. Here, we successfully grew high-quality large-area graphene/h-BN vertical heterostructures on Pt foils by one-batch low-pressure chemical vapor deposition (LPCVD). We obtained the high quality of about 200-µm-wide graphene/h-BN film having uniform layer thickness.

View Article and Find Full Text PDF

The fabrication of large-area and well-ordered nanostructures using lithographic techniques is challenging. We have developed novel approaches for sub-50 nm nanopatterning using an electrohydrodynamic lithography (EHL) technique by tailoring experimental parameters such as applied voltage, stamp features, filling ratio, and choice of resist film. We obtain a sub-50 nm pattern replica from a master stamp that contains an array of line patterns having 50 nm widths.

View Article and Find Full Text PDF

We investigate the effect of electric field on VO back-gated field effect transistor (FET) devices. Using hybrid dielectric layers, we demonstrate the highest resistance modulation on the order of 10 in VO at a positive gate bias of 80 V (1.6 MV/cm).

View Article and Find Full Text PDF