A migration of cancer is one of the most important factors affecting cancer therapy. Particularly, a cancer migration study in a microgravity environment has gained attention as a tool for developing cancer therapy. In this study, we evaluated the proliferation and migration of two types (adenocarcinoma A549, squamous cell carcinoma H1703) of non-small cell lung cancers (NSCLC) in a floating environment with microgravity.
View Article and Find Full Text PDFDue to the morphological resemblance between the electrospun nanofibers and extracellular matrix (ECM), electrospun fibers have been widely used to fabricate scaffolds for tissue regeneration. Relationships between scaffold morphologies and cells are cell type dependent. In this study, we sought to determine an optimum electrospun fiber diameter for human vascular smooth muscle cell (VSMC) regeneration in vascular scaffolds.
View Article and Find Full Text PDFThe processing time for beam training in millimeter-wave (mmWave) cellular systems can be significantly reduced by a code division multiplexing (CDM)-based technique, where multiple beams are transmitted simultaneously with their corresponding Tx beam IDs (BIDs) in the preamble. However, mmWave cellular systems with CDM-based preambles require a large number of cell IDs (CIDs) and BIDs, and a high computational complexity for CID and BID (CBID) searches. In this paper, a new preamble design technique that can increase the number of CBIDs significantly is proposed, using a preamble sequence constructed by a combination of two Zadoff-Chu (ZC) sequences.
View Article and Find Full Text PDF