This study developed mycelial biochar composites, BQH-AN and BQH-MV, with stable physicochemical properties and significantly improved adsorption capabilities through microbial modification. The results showed that the specific surface area and porosity of BQH-AN (3547.47 m g and 2.
View Article and Find Full Text PDFBacterial infection, hyperinflammation and hypoxia, which can lead to amputation in severe cases, are frequently observed in diabetic wounds, and this has been a critical issue facing the repair of chronic skin injuries. In this study, a copper-based MOF (TAX@HKUST-1) highly loaded with taxifolin (TAX) with a drug loading of 41.94 ± 2.
View Article and Find Full Text PDFA carbon material with both open macrochannel arrays and abundant micro/mesopores was prepared, characterized, and applied for removing chloramphenicol (CAP) from water. In the preparation process, Carex meyeriana Kunth (CM) with natural channel arrays was used as the precursor for producing the biochar, and NaOH was used for removing silicon and formatting micro- and mesopores of the porous carbon. The product (PCCM) exhibited the highest specific surface area (2700.
View Article and Find Full Text PDFAdsorption is an economical and efficient method for wastewater treatment, and its advantages are closely related to adsorbents. Herein, the medicus calyx (AC) was used as the precursor for producing the porous carbon adsorbent (PCAC). PCAC was prepared through carbonization and chemical activation.
View Article and Find Full Text PDFComputer simulations are widely used for the selection of conditions for the synthesis of molecularly imprinted polymers and can rapidly reduce the experimental cycle time and save labor and materials. In this paper, estrone molecularly imprinted polymers (E1-MIPs) are designed at the M062X/6-311+G(,) level with itaconic acid (IA) as the functional monomer. The imprinted molar ratio between E1 and IA was optimized, cross-linkers and solvents were screened, and the nature of interactions between E1 and IA was explored.
View Article and Find Full Text PDFQuartz crystal microbalances (QCMs) have been widely used in the food industry, environmental monitoring, and biomedicine. Here, a molecularly imprinted QCM sensor was prepared and used for formaldehyde detection. Using polyvinyl chloride as the embedding material and tetrahydrofuran as the solvent, a QCM electrode was modified with HCHO molecularly imprinted polymers (HCHO-MIPs).
View Article and Find Full Text PDFHere, norfloxacin (NOR) molecularly imprinted polymers (MIPs) exhibiting improved adsorption and selectivity properties were prepared via simulation and experiment. NOR and methacrylic acid (MAA) were employed as the imprinting molecule and functional monomer, respectively. The imprinting ratio, as well as cross-linking agents of the NOR-MIPs, had been optimised via the LC-ωPBE/6-31G(d,p) method.
View Article and Find Full Text PDFHerein, a series of organic molecules were designed through locating different substituents on the compound (WD8-c-1) to develop their performances used as the sensitizers in the field of dye-sensitized solar cells. The geometry and relevant electronic properties of WD8-c-1 and its derivatives were simulated at the B3LYP/6-31G(d,p) level. The absorption spectra were calculated using the TD-PBE0/6-31+G(d,p) method.
View Article and Find Full Text PDFThis work is supplying an in-depth investigation of the optical, electronic, and charge transfer properties for heteroatom effects on the starburst triphenylamine derivative, molecule WD8-c-1, which has been studied in our previous work. The geometry and relevant electronic properties of WD8-c-1 and its derivatives in ground state for photovoltaic applications were simulated by the B3LYP/6-31G (d,p) method. Their absorption spectra have been calculated at the TD-PBE0/6-31 + G (d,p) level.
View Article and Find Full Text PDFChloramphenicol was chosen as the imprinting molecule and the methacrylic acid was chosen as the functional monomer to prepare molecularly imprinted polymers. Ethylene glycol dimethacrylate, pentaerythritol triacrylate, and trimethylolpropane trimethylacrylate were used as the cross-linking agents, respectively. The interaction processes between chloramphenicol and methacrylic acid were simulated by using the ωB97XD/6-31G (d,p) method.
View Article and Find Full Text PDFWith the aid of theoretical calculations, a series of molecularly imprinted polymers (MIPs) were designed and prepared for the recognition of dicyandiamide (DCD) via precipitation polymerization using acetonitrile as the solvent at 333 K. On the basis of the long-range correction method of M062X/6-31G(d,p), we simulated the bonding sites, bonding situations, binding energies, imprinted molar ratios, and the mechanisms of interaction between DCD and the functional monomers. Among acrylamide (AM), ,'-methylenebisacrylamide (MBA), itaconic acid (IA), and methacrylic acid (MAA), MAA was confirmed as the best functional monomer, because the strongest interaction (the maximum number of hydrogen bonds and the lowest binding energy) occurs between DCD and MAA, when the optimal molar ratios for DCD to the functional monomers were used, respectively.
View Article and Find Full Text PDFA series of perylene diimide (PDI) derivatives have been investigated at the CAM-B3LYP/6-31G(d) and the TD-B3LYP/6-31+G(d,p) levels to design solar cell acceptors with high performance in areas such as suitable frontier molecular orbital (FMO) energies to match oligo(thienylenevinylene) derivatives and improved charge transfer properties. The calculated results reveal that the substituents slightly affect the distribution patterns of FMOs for PDI-BI. The electron withdrawing group substituents decrease the FMO energies of PDI-BI, and the electron donating group substituents slightly affect the FMO energies of PDI-BI.
View Article and Find Full Text PDFA series of oligo(thienylenevinylene) derivatives with 1,4-dihydropyrrolo[3,2-b]pyrrole as core has been investigated at the PBE0/6-31G(d) and the TD-PBE0/6-31+G(d,p) levels to design materials with high performances such as broad absorption spectra and higher balance transfer property. The results show that position and amount of arm affect the electronic density contours of frontier molecular orbitals significantly. The molecule with four arms owns the narrowest energy gap and the largest maximum absorption wavelength, and the molecule with two arms in positions a and c has the broadest absorption region among the designed molecules.
View Article and Find Full Text PDFActa Crystallogr C
February 2013
The title compound, [Co(C(10)H(8)N(2))(3)](2)[V(4)O(12)]·11H(2)O, is composed of two symmetry-related cations containing octahedrally coordinated Co(II) ions, a centrosymmetric [V(4)O(12)](4-) anion with an eight-membered ring structure made up of four VO(4) tetrahedra, and 11 solvent water molecules. The Co(II) cations and vanadate anions are isolated and build cation and anion layers, respectively. In addition, the title compound exhibits a three-dimensional network through intra- and intermolecular hydrogen-bond interactions between water molecules and O atoms of the anions, and the crystal structure is stabilized mainly by hydrogen bonds.
View Article and Find Full Text PDFA sodalite-type porous metal-organic framework with polyoxometalate templates, H(3)[(Cu(4)Cl)(3)(BTC)(8)](2)[PW(12)O(40)]·(C(4)H(12)N)(6)·3H(2)O (NENU-11; BTC = 1,3,5-benzenetricarboxylate), was obtained by a hydrothermal reaction. As a reasonable candidate for eliminating nerve gas, NENU-11 displays good adsorption behavior for dimethyl methylphosphonate (15.5 molecules per formula unit).
View Article and Find Full Text PDFThe reactivity of polyoxoniobates has been studied in acidic solution by grafting niobium onto trivacant Keggin-type germanotungstates. Four niobium-containing compounds were obtained in the course of this study. Cs(6.
View Article and Find Full Text PDFA series of remarkable crystalline compounds [Cu(2)(BTC)(4/3)(H(2)O)(2)](6)[H(n)XM(12)O(40)].(C(4)H(12)N)(2) (X = Si, Ge, P, As; M = W, Mo) were obtained from the simple one-step hydrothermal reaction of copper nitrate, benzentricaboxylate (BTC), and different Keggin polyoxometalates (POMs). In these compounds, the catalytically active Keggin polyanions were alternately arrayed as noncoordinating guests in the cuboctahedral cages of a Cu-BTC-based metal-organic framework (MOF) host matrix.
View Article and Find Full Text PDFThe Dawson anion P 2W 18O 62 (6-) has been used as a noncoordinating polyoxoanion template for the construction of two metal-organic frameworks, namely, [M 2(bpy) 3(H 2O) 2(ox)][P 2W 18O 62]2(H 2-bpy). nH 2O (M = Co(II), n = 3 ( 1); M = Ni(II), n = 2 ( 2)) (bpy = 4,4'-bipyridine; ox = C 2O 4 (2-)). Single-crystal X-ray analysis reveals that both of the structures exhibit 3D host frameworks constructed from the oxalate-bridged binuclear superoctahedron secondary building units (SBUs) and bpy linkers and the voids of which are occupied by Dawson anions, guest bpy, and water molecules.
View Article and Find Full Text PDF