Publications by authors named "Dachao Hong"

Formaldehyde (FA) is a deleterious C1 pollutant commonly found in the interiors of modern buildings. C1 chemicals are generally more toxic than the corresponding C2 chemicals, but the selective discrimination of C1 and C2 chemicals using simple sensory systems is usually challenging. Here, we report the selective detection of FA vapor using a chemiresistive sensor array composed of modified hydroxylamine salts (MHAs, ArCHONH·HCl) and single-walled carbon nanotubes (SWCNT).

View Article and Find Full Text PDF

The regulation of H evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H production. We have successfully generated Au-Cu nanoalloys using a laser ablation method and deposited them on TiO photocatalyst films (Au Cu /TiO). The Au-Cu/TiO films were employed as photocatalysts for H production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm).

View Article and Find Full Text PDF

A hetero-dinuclear Ir-Cu complex with two adjacent sites was employed as a catalyst for the aerobic oxidation of aromatic olefins driven by formate in water. An Ir-H intermediate, generated through formate dehydrogenation, was revealed to activate terminal aromatic olefins to afford an Ir-alkyl species, and the process was promoted by a hydrophobic [Ir-H]-[substrate aromatic ring] interaction in water. The Ir-alkyl species subsequently reacted with dioxygen to yield corresponding methyl ketones and was promoted by the presence of the Cu moiety under acidic conditions.

View Article and Find Full Text PDF

Hydrogen peroxide was directly produced from oxygen and formic acid, catalysed by a hetero-dinuclear Ir-Ni complex with two adjacent sites, at ambient temperature. Synergistic catalysis derived from the hetero-dinuclear Ir and Ni centres was demonstrated by comparing its activity to those of the component mononuclear Ir and Ni complexes. A reaction intermediate of Ir-hydrido was detected by UV-vis, ESI-TOF-MS, and 1H NMR spectroscopies.

View Article and Find Full Text PDF

A Ru complex, [Ru(tpphz)(bpy)] (1) (tpphz = tetrapyridophenazine, bpy = 2,2'-bipyridine), whose tpphz ligand has a pyrazine moiety, is converted efficiently to [Ru(tpphz-HH)(bpy)] (2) having a dihydropyrazine moiety upon photoirradiation of a water-methanol mixed solvent solution of 1 in the presence of an electron donor. In this reaction, the triplet metal-to-ligand charge-transfer excited state (MLCT*) of 1 is firstly formed upon photoirradiation and the MLCT* state is reductively quenched with an electron donor to afford [Ru(tpphz˙)(bpy)], which is converted to 2 without the observation of detectable reduced intermediates by nano-second laser flash photolysis. The inverse kinetic isotope effect (KIE) was observed to be 0.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created new Ir-M complexes (M = Co, Ni, Cu) that have two active sites for catalyzing hydrogen production from formic acid in water using a special ligand.
  • The Ir-M complexes showed up to 350 times higher hydrogen production rates than individual Ir complexes, with effectiveness increasing in the order of Ir-Cu < Ir-Co < Ir-Ni.
  • This enhancement is due to interactions between the Ir and M centers, where the M moieties help accelerate the reaction by influencing the Ir center, and both centers can aid in activating protons for hydrogen production.
View Article and Find Full Text PDF

Chemiresistive sensors, which are based on semiconducting materials, offer real-time monitoring of environment. However, detection of nonpolar chemical substances is often challenging because of the weakness of the doping effect. Herein, we report a concept of combining a cascade reaction (CR) and a chemiresistive sensor array for sensitive and selective detection of a target analyte (herein, ethylene in air).

View Article and Find Full Text PDF

We have synthesized a new Ni(II) complex having an SN-tetradentate ligand with two noncoordinating pyridine pendants as binding sites of Lewis-acidic metal ions in the vicinity of the Ni center, aiming at efficient CO production in photocatalytic CO reduction. In the presence of Mg ions, enhancement of selective CO formation was observed in photocatalytic CO reduction by the Ni complex with the pyridine pendants through the formation of a Mg-bound species, as compared to the previously reported Ni complex without the Lewis-acid capturing sites. A higher quantum yield of CO evolution for the Mg-bound Ni complex was determined to be 11.

View Article and Find Full Text PDF

We have designed and synthesized a hetero-dinuclear Ru-Co complex with a dinucleating ligand inspired by hetero-dinuclear active sites of metalloenzymes. A synergistic effect between the adjacent Ru and Co sites has been confirmed in catalytic olefin hydrogenation by the complex, exhibiting a much higher turnover number than those of mononuclear Ru or Co complexes as the components. A Ru-hydrido species was detected by H NMR and electrospray ionization (ESI)-time-of-flight (TOF)-MS measurements as an intermediate to react with olefins, and Co-bound methanol was suggested to act as a proton source.

View Article and Find Full Text PDF

We investigated the selective oxidation of styrenes to benzaldehydes by using a non-irradiated TiO-HO catalytic system. The oxidation promotes multi-step reactions from styrenes, including the cleavage of a C=C double bond and the addition of an oxygen atom selectively and stepwise to provide the corresponding benzaldehydes in good yields (up to 72%). These reaction processes were spectroscopically shown by fluorescent measurements under the presence of competitive scavengers.

View Article and Find Full Text PDF

Stoichiometric electron-transfer (ET) oxidation of two diastereomeric μ-peroxo-μ-hydroxo dinuclear Co(III) complexes with tris(2-pyridylmethyl)amine (TPA) was examined to scrutinize the reaction mechanism of O evolution from the peroxo complexes, as seen in the final step in water oxidation by a Co(III)-TPA complex. The two isomeric Co(III)-peroxo complexes were synthesized and selectively isolated by recrystallization under different conditions. Although cyclic voltammograms of the two isomers in aqueous solutions showed one reversible wave at 1.

View Article and Find Full Text PDF

We report homogeneous electrocatalytic and photocatalytic H evolution using two Ni(II) complexes with SN-type tetradentate ligands bearing two different sizes of chelate rings as catalysts. A Ni(II) complex with a five-membered SCS-Ni chelate ring (1) exhibited higher activity than that with a six-membered SCS-Ni chelate ring (2) in both electrocatalytic and photocatalytic H evolution despite both complexes showing the same reduction potentials. A stepwise reduction of the Ni center from Ni(II) to Ni(0) was observed in the electrochemical measurements; the first reduction is a pure electron transfer reaction to form a Ni(I) complex as confirmed by electron spin resonance measurements, and the second is a 1e/1H proton-coupled electron transfer reaction to afford a putative Ni(II)-hydrido (Ni-H) species.

View Article and Find Full Text PDF

A Ni(II) complex bearing an SN-type tetradentate ligand inspired by the active site of carbon monoxide dehydrogenase was found to selectively catalyze CO reduction to produce CO in a photocatalytic system using [Ru(bpy)] (bpy = 2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as an electron donor. The Ni(II) complex shows a high turnover number over 700 with high CO selectivity of >99% and quantum yield of 1.42% in the photocatalytic system.

View Article and Find Full Text PDF

For exerting potential catalytic and photocatalytic activities of metal nanoparticles (MNPs), immobilization of MNPs on a support medium in highly dispersed state is desired. In this Research Article, we demonstrated that surfactant-free platinum nanoparticles (PtNPs) were efficiently immobilized on graphene oxide (GO) nanosheets in a highly dispersed state by utilizing oligopeptide β-sheets as a cross-linker. The fluorenyl-substituted peptides were designed to form β-sheets, where metal-binding thiol groups and protonated and positively charged amino groups are integrated on the opposite sides of the surface of a β-sheet, which efficiently bridge PtNPs and GO nanosheet.

View Article and Find Full Text PDF

Conversion of the greenhouse gas carbon dioxide (CO2) to value-added products is an important challenge for sustainable energy research, and nanomaterials offer a broad class of heterogeneous catalysts for such transformations. Here we report a molecular surface functionalization approach to tuning gold nanoparticle (Au NP) electrocatalysts for reduction of CO2 to CO. The N-heterocyclic (NHC) carbene-functionalized Au NP catalyst exhibits improved faradaic efficiency (FE = 83%) for reduction of CO2 to CO in water at neutral pH at an overpotential of 0.

View Article and Find Full Text PDF

A bis-hydroxo-bridged dinuclear Co(III)-pyridylmethylamine complex (1) was synthesized and the crystal structure was determined by X-ray crystallography. Complex 1 acts as a homogeneous catalyst for visible-light-driven water oxidation by persulfate (S2O8(2-)) as an oxidant with [Ru(II)(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer affording a high quantum yield (44%) with a large turnover number (TON = 742) for O2 formation without forming catalytically active Co-oxide (CoO(x)) nanoparticles. In the water-oxidation process, complex 1 undergoes proton-coupled electron-transfer (PCET) oxidation as a rate-determining step to form a putative dinuclear bis-μ-oxyl Co(III) complex (2), which has been suggested by DFT calculations.

View Article and Find Full Text PDF

The apparent incongruity between the increasing consumption of fuels and chemicals and the finite amount of resources has led us to seek means to maintain the sustainability of our society. Artificial photosynthesis, which utilizes sunlight to create high-value chemicals from abundant resources, is considered as the most promising and viable method. This Minireview describes the progress and challenges in the field of artificial photosynthesis in terms of its key components: developments in photoelectrochemical water splitting and recent progress in electrochemical CO2 reduction.

View Article and Find Full Text PDF

NiMnO3 was found to be an efficient catalyst for light-driven water oxidation using [Ru(bpy)3](2+) and S2O8(2-) as a photosensitiser and a sacrificial oxidant, respectively. NiMnO3 exhibited remarkably high catalytic activity in comparison with manganese oxides and nickel oxide. For electrochemical water oxidation, the highest catalytic current was also obtained with NiMnO3 among the manganese oxides.

View Article and Find Full Text PDF

Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation.

View Article and Find Full Text PDF

Single or mixed oxides of iron and nickel have been examined as catalysts in photocatalytic water oxidation using [Ru(bpy)(3)](2+) as a photosensitizer and S(2)O(8)(2-) as a sacrificial oxidant. The catalytic activity of nickel ferrite (NiFe(2)O(4)) is comparable to that of a catalyst containing Ir, Ru, or Co in terms of O(2) yield and O(2) evolution rate under ambient reaction conditions. NiFe(2)O(4) also possesses robustness and ferromagnetic properties, which are beneficial for easy recovery from the solution after reaction.

View Article and Find Full Text PDF

Cobalt-containing metal oxides [perovskites (LaCoO(3), NdCoO(3), YCoO(3), La(0.7)Sr(0.3)CoO(3)), spinel (Co(3)O(4)) and wolframite (CoWO(4))] have been examined as catalysts for photocatalytic water oxidation with Na(2)S(2)O(8) and [Ru(bpy)(3)](2+) as an electron acceptor and a photosensitizer, respectively.

View Article and Find Full Text PDF

Catalytic water oxidation to generate oxygen was achieved using all-inorganic mononuclear ruthenium complexes bearing Keggin-type lacunary heteropolytungstate, [Ru(III)(H(2)O)SiW(11)O(39)](5-) (1) and [Ru(III)(H(2)O)GeW(11)O(39)](5-) (2), as catalysts with (NH(4))(2)[Ce(IV)(NO(3))(6)] (CAN) as a one-electron oxidant in water. The oxygen atoms of evolved oxygen come from water as confirmed by isotope-labeled experiments. Cyclic voltammetric measurements of 1 and 2 at various pH's indicate that both complexes 1 and 2 exhibit three one-electron redox couples based on ruthenium center.

View Article and Find Full Text PDF