Publications by authors named "Dabeva M"

Liver repopulation by transplanted hepatocytes has not been achieved previously in a normal liver microenvironment. Here we report that adult rat hepatocytes transduced ex vivo with a lentivirus expressing a human YapERT2 fusion protein (hYapERT2) under control of the hepatocyte-specific transthyretin (TTR) promoter repopulate normal rat liver in a tamoxifen-dependent manner. Transplanted hepatocytes expand very slowly but progressively to produce 10% repopulation at 6 months, showing clusters of mature hepatocytes that are fully integrated into hepatic parenchyma, with no evidence for dedifferentiation, dysplasia or malignant transformation.

View Article and Find Full Text PDF

In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood.

View Article and Find Full Text PDF

Many chronic liver diseases are life-threatening. When the liver loses the ability to repair itself the only treatment currently available is liver transplant. However, there are not enough donors to treat all the patients.

View Article and Find Full Text PDF

Unlabelled: Thymus cell antigen-1 (Thy-1)-expressing cells proliferate in the liver during oval cell (OC)-mediated liver regeneration. We characterized these cells in normal liver, in carbon tetrachloride-injured liver, and in several models of OC activation. The gene expression analyses were performed using reverse-transcriptase polymerase chain reaction (RT-PCR), quantitative RT-PCR (Q-RT-PCR) of cells isolated by fluorescence-activated cell sorting (FACS), and by immunofluorescent microscopy of tissue sections and isolated cells.

View Article and Find Full Text PDF

Purpose: Regulated expression of cell adhesion molecules could be critical in the proliferation, sequestration, and maintenance of stem/progenitor cells. Therefore, we determined fetal and adult stage-specific roles of cell adhesion in liver cell compartments.

Methods: We performed immunostaining for the adhesion molecules, E-cadherin and Ep-CAM, associated proteins, beta-catenin and alpha-actinin, hepatobiliary markers, albumin, alpha-fetoprotein, and cytokeratin-19, and the proliferation marker, Ki-67.

View Article and Find Full Text PDF

Unlabelled: Oval cells appear and expand in the liver when hepatocyte proliferation is compromised. Many different markers have been attributed to these cells, but their nature still remains obscure. This study is a detailed gene expression analysis aimed at revealing their identity and repopulating in vivo capacity.

View Article and Find Full Text PDF

Unlabelled: Hepatic progenitor/oval cells appear in injured livers when hepatocyte proliferation is impaired. These cells can differentiate into hepatocytes and cholangiocytes and could be useful for cell and gene therapy applications. In this work, we studied progenitor/oval cell surface markers in the liver of rats subjected to 2-acetylaminofluorene treatment followed by partial hepatectomy (2-AAF/PH) by using rat genome 230 2.

View Article and Find Full Text PDF

Glypican-3 (Gpc3), a cell surface-linked heparan sulfate proteoglycan is highly expressed during embryogenesis and is involved in organogenesis. Its exact biological function remains unknown. We have studied the expression of Gpc3 in fetal and adult liver, in liver injury models of activation of liver progenitor cells: D-galactosamine and 2-acetylaminofluorene (2-AAF) administration followed by partial hepatectomy (PH) (2-AAF/PH); and in the Solt-Farber carcinogenic model: by initiation with a single dose of diethylnitrosamine and promotion with 2-AAF followed by PH treatment.

View Article and Find Full Text PDF

Background & Aims: A critical property of stem cells is their ability to repopulate an organ or tissue under nonselective conditions. The aims of this study were to determine whether we could obtain reproducible, high levels of liver repopulation by transplanted fetal liver stem/progenitor cells in normal adult liver and the mechanism by which liver replacement occurred.

Methods: Wild-type (dipeptidyl peptidase IV [DPPIV(+)]) embryonic day (ED) 14 fetal liver cells underwent transplantation into DPPIV(-) mutant F344 rats to follow the fate and differentiation of transplanted cells.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9), recently cloned in several laboratories, including ours, causes a third form of autosomal dominant hypercholesterolemia. Its mechanism of action remains unclear. We studied the expression and subcellular localization of PCSK9 in fetal and adult rat tissues associated with cholesterol homeostasis using quantitative reverse transcriptase--PCR, Western blot analysis, subcellular fractionation, and confocal immunofluorescent microscopy.

View Article and Find Full Text PDF

Although it was proposed almost 60 years ago that the adult mammalian liver contains hepatic stem cells, this issue remains controversial. Part of the problem is that no specific marker gene unique to the adult hepatic stem cell has yet been identified, and regeneration of the liver after acute injury is achieved through proliferation of adult hepatocytes and does not require activation or proliferation of stem cells. Also, there are differences in the expected properties of stem versus progenitor cells, and we attempt to use specific criteria to distinguish between these cell types.

View Article and Find Full Text PDF

Liver progenitor/oval cells differentiate into hepatocytes and biliary epithelial cells, repopulating the liver when the regenerative capacity of hepatocytes is impaired. Recent studies have shown that hematopoietic bone marrow (BM) stem/progenitor cells can give rise to hepatocytes in diseased/damaged liver. One study has reported that BM cells can transdifferentiate into liver progenitor/oval cells, but it has not been proven that the latter can repopulate the liver.

View Article and Find Full Text PDF

To identify new and differentially expressed genes in rat fetal liver epithelial stem/progenitor cells during their proliferation, lineage commitment, and differentiation, we used a high throughput method-mouse complementary DNA (cDNA) microarrays-for analysis of gene expression. The gene expression pattern of rat hepatic cells was studied during their differentiation in vivo: from embryonic day (ED) 13 until adulthood. The differentially regulated genes were grouped into two clusters: a cluster of up-regulated genes comprised of 281 clones and a cluster of down-regulated genes comprised of 230 members.

View Article and Find Full Text PDF

Research on hepatic stem cells has entered a new era of controversy, excitement, and great expectations. Although adult liver stem cells have not yet been isolated, an enormous repopulating capacity of transplanted mature hepatocytes under conditions of continuous liver injury has been discovered. Stem/progenitor cells from fetal liver have been successfully isolated and transplanted, repopulating up to 10% of normal liver.

View Article and Find Full Text PDF

Hematopoietic stem cells rarely contribute to hepatic regeneration, however, the mechanisms governing their homing to the liver, which is a crucial first step, are poorly understood. The chemokine stromal cell-derived factor-1 (SDF-1), which attracts human and murine progenitors, is expressed by liver bile duct epithelium. Neutralization of the SDF-1 receptor CXCR4 abolished homing and engraftment of the murine liver by human CD34+ hematopoietic progenitors, while local injection of human SDF-1 increased their homing.

View Article and Find Full Text PDF

Recent studies have shown that nondividing primary cells, such as hepatocytes, can be efficiently transduced in vitro by human immunodeficiency virus-based lentivirus vectors. Other studies have reported that, under certain conditions, the liver can be repopulated with transplanted hepatocytes. In the present study, we combined these procedures to develop a model system for ex vivo gene therapy by repopulating rat livers with hepatocytes and hepatoblasts transduced with a lentivirus vector expressing a reporter gene, green fluorescent protein (GFP).

View Article and Find Full Text PDF

The potential of embryonal day (ED) 14 fetal liver epithelial progenitor (FLEP) cells from Fischer (F)344 rats to repopulate the normal and retrorsine-treated liver was studied throughout a 6-month period in syngeneic dipeptidyl peptidase IV (DPPIV-) mutant F344 rats. In normal liver, FLEP cells formed: 1) hepatocytic clusters ranging in size up to approximately 800 to 1000 cells; 2) bile duct structures connected to pre-existing host bile ducts; and 3) mixed clusters containing both hepatocytes and bile duct epithelial cells. Liver repopulation after 6 months was moderate (5 to 10%).

View Article and Find Full Text PDF

Cell transplantation into hepatic sinusoids, which is necessary for liver repopulation, could cause hepatic ischemia. To examine the effects of cell transplantation on host hepatocytes, we transplanted Fisher 344 rat hepatocytes into syngeneic dipeptidyl peptidase IV-deficient rats. Within 24 h of cell transplantation, areas of ischemic necrosis, along with transient disruption of gap junctions, appeared in the liver.

View Article and Find Full Text PDF

Differentially expressed cDNA clones from fetal rat liver were isolated using suppression subtractive hybridization, combined with an efficient screening strategy. Approximately 30,000 clones were screened, yielding 643 genes whose expression was induced, of which 201 clones were distinct and 68 represented ESTs or newly discovered genes of unknown function. Based on their expression patterns in different organs, fetal liver, liver regeneration models, and gut epithelial progenitor cell lines, the subtracted clones presented in this work were placed into four categories: (1) hepatoblast-specific genes; (2) hematopoietic cell-specific genes; (3) genes expressed in hepatoblasts, in hematopoietic cells, and at varying levels in other tissues; and (4) genes overexpressed in fetal liver, in models of activation of liver progenitor cells, and in epithelial progenitor cell lines.

View Article and Find Full Text PDF

To identify cells that have the ability to proliferate and differentiate into all epithelial components of the liver lobule, we isolated fetal liver epithelial cells (FLEC) from ED 14 Fischer (F) 344 rats and transplanted these cells in conjunction with two-thirds partial hepatectomy into the liver of normal and retrorsine (Rs) treated syngeneic dipeptidyl peptidase IV mutant (DPPIV(-)) F344 rats. Using dual label immunohistochemistry/in situ hybridization, three subpopulations of FLEC were identified: cells expressing both alpha-fetoprotein (AFP) and albumin, but not CK-19; cells expressing CK-19, but not AFP or albumin, and cells expressing AFP, albumin, and cytokeratins-19 (CK-19). Proliferation, differentiation, and expansion of transplanted FLEC differed significantly in the two models.

View Article and Find Full Text PDF

Recently, we reported near-complete repopulation of the rat liver by transplanted hepatocytes using retrorsine (RS), a pyrrolizidine alkaloid that alkylates cellular DNA and blocks proliferation of resident hepatocytes, followed by transplantation of normal hepatocytes in conjunction with two-thirds partial hepatectomy (PH). Because two-thirds PH is not feasible for use in humans, in the present study, we evaluated the ability of thyroid hormone (triiodothyronine [T(3)]), a known hepatic mitogen, to stimulate liver repopulation in the retrorsine model. Because T(3) initiates morphogenesis in amphibians through a process involving both cell proliferation and apoptosis, we also determined whether apoptosis might play a role in the mechanism of hepatocyte proliferation induced by T(3).

View Article and Find Full Text PDF

To establish the differentiation potential of progenitor cells, non-parenchymal epithelial cells from the F344 rat liver (FNRL cells) were studied. These cells reacted with the OV-6 antibody marker of oval cells, but were negative for hepatocyte markers (albumin, transferrin, glycogen, glucose-6-phosphatase, H4 antigen), biliary markers (gamma glutamyl transpeptidase, cytokeratin-19), and alpha-fetoprotein, although exposure to sodium butyrate induced nascent albumin and alpha-fetoprotein mRNA transcription. When stably transduced, FNRL cells expressed a retroviral promotor-driven lacZ reporter in vitro, similar to transgene expression in hepatocyte-derived HepG2 cells.

View Article and Find Full Text PDF

Recently, we described a new model for hepatocyte transplantation with nearly total replacement of the liver by exogenous hepatocytes (E. Laconi et al., Am.

View Article and Find Full Text PDF

Recently, we described a new strategy for hepatocyte transplantation, using retrorsine/partial hepatectomy (PH) in a DPPIV- mutant Fischer rat model. Treatment of rats with retrorsine, a pyrrolizidine alkaloid, blocks endogenous hepatocytes from proliferating, so that after exposure to this agent coupled with PH and hepatocyte transplantation, transplanted hepatocytes selectively repopulate the liver. In the present study, we determined whether this method of cell transplantation can restore biosynthetic and physiological function in the liver by transplanting normal hepatocytes into rats genetically deficient in albumin synthesis, the Nagase analbuminic rat (NAR).

View Article and Find Full Text PDF