Publications by authors named "Daan M Panneman"

Background: Inherited retinal diseases (IRDs) are clinically complex and genetically heterogeneous visual impairment disorders with varying penetrance and severity. Disease-causing variants in at least 289 nuclear and mitochondrial genes have been implicated in their pathogenesis.

Methods: Whole exome sequencing results were analyzed using established pipelines and the results were further confirmed by Sanger sequencing and minigene splicing assay.

View Article and Find Full Text PDF

Introduction: Autosomal dominant retinitis pigmentosa type 17 (adRP, type RP17) is caused by complex structural variants (SVs) affecting a locus on chromosome 17 (chr17q22). The SVs disrupt the 3D regulatory landscape by altering the topologically associating domain (TAD) structure of the locus, creating novel TAD structures (neo-TADs) and ectopic enhancer-gene contacts. Currently, screening for RP17-associated SVs is not included in routine diagnostics given the complexity of the variants and a lack of cost-effective detection methods.

View Article and Find Full Text PDF

Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients.

View Article and Find Full Text PDF

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.

View Article and Find Full Text PDF
Article Synopsis
  • * Data collected from 42 patients revealed that Stargardt disease and nonsyndromic retinitis pigmentosa were the most common IRDs, with autosomal recessive inheritance being the primary mode of transmission.
  • * The research identified 16 distinct IRD mutations, including nine novel ones, with one likely serving as a founder mutation, contributing valuable insights for future diagnosis and potential treatments for this community.
View Article and Find Full Text PDF

Phosphoglucomutase 1 (PGM1) is a key enzyme for the regulation of energy metabolism from glycogen and glycolysis, as it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. PGM1 deficiency is an autosomal recessive disorder characterized by a highly heterogenous clinical spectrum, including hypoglycemia, cleft palate, liver dysfunction, growth delay, exercise intolerance, and dilated cardiomyopathy. Abnormal protein glycosylation has been observed in this disease.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability.

View Article and Find Full Text PDF
Article Synopsis
  • Macular dystrophies are inherited retinal disorders that lead to central vision loss and are identified as rare individually but common overall.
  • A specialized genetic testing method called Single molecule Molecular Inversion Probes (smMIPs) was successfully used to analyze 57 cases of macular dystrophy in the UK, revealing a high solve rate of 63.2%.
  • The study found that most variants in Caucasian STGD1 cases are well-known, and it established that associated diseases can often be differentiated from other macular dystrophies through thorough clinical evaluation.
View Article and Find Full Text PDF

Macular degenerations (MDs) are a subgroup of retinal disorders characterized by central vision loss. Knowledge is still lacking on the extent of genetic and nongenetic factors influencing inherited MD (iMD) and age-related MD (AMD) expression. Single molecule Molecular Inversion Probes (smMIPs) have proven effective in sequencing the ABCA4 gene in patients with Stargardt disease to identify associated coding and noncoding variation, however many MD patients still remain genetically unexplained.

View Article and Find Full Text PDF

Deregulated energy homeostasis represents a hallmark of aging and results from complex gene-by-environment interactions. Here, we discovered that reducing the expression of the gene ech-6 encoding enoyl-CoA hydratase remitted fat diet-induced deleterious effects on lifespan in Caenorhabditis elegans, while a basal expression of ech-6 was important for survival under normal dietary conditions. Lipidomics revealed that supplementation of fat in ech-6-silenced worms had marginal effects on lipid profiles, suggesting an alternative fat utilization for energy production.

View Article and Find Full Text PDF

The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells.

View Article and Find Full Text PDF

NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1.

View Article and Find Full Text PDF

Isolated complex III (CIII) deficiencies are among the least frequently diagnosed mitochondrial disorders. Clinical symptoms range from isolated myopathy to severe multi-systemic disorders with early death and disability. To date, we know of pathogenic variants in genes encoding five out of 10 subunits and five out of 13 assembly factors of CIII.

View Article and Find Full Text PDF