Publications by authors named "Daan Geerke"

Background: Direct oral factor (F)Xa inhibitors are widely used as alternatives to conventional vitamin K antagonists in managing venous thromboembolism and nonvalvular atrial fibrillation. Unfortunately, bleeding-related adverse events remain a major concern in clinical practice. In case of bleeding or emergency surgery, rapid-onset reversal agents may be required to counteract the anticoagulant activity.

View Article and Find Full Text PDF

Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine.

View Article and Find Full Text PDF

Base-J (β-D-glucopyranosyloxymethyluracil) is a modified DNA nucleotide that replaces 1% of thymine in kinetoplastid flagellates. The biosynthesis and maintenance of base-J depends on the base-J-binding protein 1 (JBP1) that has a thymidine hydroxylase domain and a J-DNA-binding domain (JDBD). How the thymidine hydroxylase domain synergizes with the JDBD to hydroxylate thymine in specific genomic sites, maintaining base-J during semi-conservative DNA replication, remains unclear.

View Article and Find Full Text PDF

An Online tool for Fragment-based Molecule Parametrization (OFraMP) is described. OFraMP is a web application for assigning atomic interaction parameters to large molecules by matching sub-fragments within the target molecule to equivalent sub-fragments within the Automated Topology Builder (ATB, atb.uq.

View Article and Find Full Text PDF

Macrocyclisation provides a means of stabilising the conformation of peptides, often resulting in improved stability, selectivity, affinity, and cell permeability. In this work, a new approach to peptide macrocyclisation is reported, using a cyanobenzothiazole-containing amino acid that can be incorporated into peptides by both in vitro translation and solid phase peptide synthesis, meaning it should be applicable to peptide discovery by mRNA display. This cyclisation proceeds rapidly, with minimal by-products, is selective over other amino acids including non N-terminal cysteines, and is compatible with further peptide elaboration exploiting such an additional cysteine in bicyclisation and derivatisation reactions.

View Article and Find Full Text PDF

The use of antibiotics is threatened by the emergence and spread of multidrug-resistant strains of bacteria. Thus, there is a need to develop antibiotics that address new targets. In this respect, the bacterial divisome, a multi-protein complex central to cell division, represents a potentially attractive target.

View Article and Find Full Text PDF

The C-X bond activation (X = H, C) of a series of substituted C(n°)-H and C(n°)-C(m°) bonds with C(n°) and C(m°) = H C- (methyl, 0°), CH H C- (primary, 1°), (CH ) HC- (secondary, 2°), (CH ) C- (tertiary, 3°) by palladium were investigated using relativistic dispersion-corrected density functional theory at ZORA-BLYP-D3(BJ)/TZ2P. The effect of the stepwise introduction of substituents was pinpointed at the C-X bond on the bond activation process. The C(n°)-X bonds become substantially weaker going from C(0°)-X, to C(1°)-X, to C(2°)-X, to C(3°)-X because of the increasing steric repulsion between the C(n°)- and X-group.

View Article and Find Full Text PDF

Finding new anti-tuberculosis compounds with convincing in vivo activity is an ongoing global challenge to fight the emergence of multidrug-resistant Mycobacterium tuberculosis isolates. In this study, we exploited the medium-throughput capabilities of the zebrafish embryo infection model with Mycobacterium marinum as a surrogate for M. tuberculosis.

View Article and Find Full Text PDF

The linear interaction energy (LIE) approach is an end-point method to compute binding affinities. As such it combines explicit conformational sampling (of the protein-bound and unbound-ligand states) with efficiency in calculating values for the protein-ligand binding free energy Δ . This perspective summarizes our recent efforts to use molecular simulation and empirically calibrated LIE models for accurate and efficient calculation of Δ for diverse sets of compounds binding to flexible proteins (e.

View Article and Find Full Text PDF

Force field parametrization involves a complex set of linked optimization problems, with the goal of describing complex molecular interactions by using simple classical potential-energy functions that model Coulomb interactions, dispersion, and exchange repulsion. These functions comprise a set of atomic (and molecular) parameters and together with the bonded terms they constitute the molecular mechanics force field. Traditionally, many of these parameters have been fitted in a calibration approach in which experimental measures for thermodynamic and other relevant properties of small-molecule compounds are used for fitting and validation.

View Article and Find Full Text PDF

The quality of biomolecular simulations critically depends on the accuracy of the force field used to calculate the potential energy of the molecular configurations. Currently, most simulations employ non-polarisable force fields, which describe electrostatic interactions as the sum of Coulombic interactions between fixed atomic charges. Polarisation of these charge distributions is incorporated only in a mean-field manner.

View Article and Find Full Text PDF

A new series of eighteen imidazo [2,1-b] [1,3,4]thiadiazole derivatives was efficiently synthesized and screened for antiproliferative activity against the National Cancer Institute (NCI-60) cell lines panel. Two out of eighteen derivatives, compounds 12a and 12h, showed remarkably cytotoxic activity with the half maximal inhibitory concentration values (IC) ranging from 0.23 to 11.

View Article and Find Full Text PDF

The regio- (and stereo-)selectivity and specific activity of cytochrome P450s are determined by the accessibility of potential sites of metabolism (SOMs) of the bound substrate relative to the heme, and the activation barrier of the regioselective oxidation reaction(s). The accessibility of potential SOMs depends on the relative binding free energy (ΔΔG ) of the catalytically active substrate-binding poses, and the probability of the substrate to adopt a transition-state geometry. An established experimental method to measure activation energies of enzymatic reactions is the analysis of reaction rate constants at different temperatures and the construction of Arrhenius plots.

View Article and Find Full Text PDF

Calculating free energies of binding (Δ) between ligands and their target protein is of major interest to drug discovery and safety, yet it is still associated with several challenges and difficulties. Linear interaction energy (LIE) is an efficient in silico method for Δ computation. LIE models can be trained and used to directly calculate binding affinities from interaction energies involving ligands in the bound and unbound states only, and LIE can be combined with statistical weighting to calculate Δ for flexible proteins that may bind their ligands in multiple orientations.

View Article and Find Full Text PDF

Binding free energy (Δ) computation can play an important role in prioritizing compounds to be evaluated experimentally on their affinity for target proteins, yet fast and accurate Δ calculation remains an elusive task. In this study, we compare the performance of two popular end-point methods, i.e.

View Article and Find Full Text PDF

The bacterial Cytochrome P450 (CYP) BM3 (CYP102A1) is one of the most active CYP isoforms. BM3 mutants can serve as a model for human drug-metabolizing CYPs and/or as biocatalyst for selective formation of drug metabolites. Hence, molecular and computational biologists have in the last two decades shown strong interest in the discovery and design of novel BM3 variants with optimized activity and selectivity for substrate conversion.

View Article and Find Full Text PDF

A key factor in computational drug design is the consistency and reliability with which intermolecular interactions between a wide variety of molecules can be described. Here we present a procedure to efficiently, reliably and automatically assign partial atomic charges to atoms based on known distributions. We formally introduce the molecular charge assignment problem, where the task is to select a charge from a set of candidate charges for every atom of a given query molecule.

View Article and Find Full Text PDF

In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations.

View Article and Find Full Text PDF

In this work, we propose an improved QM/MM-based strategy to determine condensed-phase polarizabilities and we use this approach to optimize a new and simple polarizable four-site water model for classical molecular simulation. For the determination of the model value for the polarizability from QM/MM, we show that our proposed consensus-fitting strategy significantly reduces the uncertainty in calculated polarizabilities in cases where the size of the local external electric field is small. By fitting electrostatic, polarization and dispersion properties of our water model based on quantum and/or combined QM/MM calculations, only a single model parameter (describing exchange repulsion) is left for empirical calibration.

View Article and Find Full Text PDF

The ability of atomic interaction parameters generated using the Automated Topology Builder and Repository version 3.0 (ATB3.0) to predict experimental hydration free enthalpies (Δ G) and solvation free enthalpies in the apolar solvent hexane (Δ G) is presented.

View Article and Find Full Text PDF

The 5'-hydroxymethyl metabolite of the penicillin based antibiotic flucloxacillin (FLX) is considered to be involved in bile duct damage occurring in a small number of patients. Because 5'-hydroxymethyl FLX is difficult to obtain by organic synthesis, biosynthesis using highly active and regioselective biocatalysts would be an alternative approach. By screening an in-house library of Cytochrome P450 (CYP) BM3 mutants, mutant M11 L437E was identified as a regioselective enzyme with relatively high activity in production of 5'-hydroxymethyl FLX as was confirmed by mass spectrometry and NMR.

View Article and Find Full Text PDF

CYP130 belongs to the subset of cytochrome P450s from Mycobacterium tuberculosis (Mtb) that have been structurally characterized. Despite several efforts for its functional characterization, CYP130 is still considered an orphan enzyme for which no endogenous or exogenous substrate has been identified. In addition, functional redox-partners for CYP130 have not been clearly established yet, hampering the elucidation of its physiological role.

View Article and Find Full Text PDF

Background: Computational methods to predict binding affinities of small ligands toward relevant biological (off-)targets are helpful in prioritizing the screening and synthesis of new drug candidates, thereby speeding up the drug discovery process. However, use of ligand-based approaches can lead to erroneous predictions when structural and dynamic features of the target substantially affect ligand binding. Free energy methods for affinity computation can include steric and electrostatic protein-ligand interactions, solvent effects, and thermal fluctuations, but often they are computationally demanding and require a high level of supervision.

View Article and Find Full Text PDF

The absence of an adequate reversal strategy to prevent and stop potential life-threatening bleeding complications is a major drawback to the clinical use of the direct oral inhibitors of blood coagulation factor Xa. Here we show that specific modifications of the substrate-binding aromatic S4 subpocket within the factor Xa active site disrupt high-affinity engagement of the direct factor Xa inhibitors. These modifications either entail amino-acid substitution of S4 subsite residues Tyr99 and/or Phe174 (chymotrypsinogen numbering), or extension of the 99-loop that borders the S4 subsite.

View Article and Find Full Text PDF

Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds.

View Article and Find Full Text PDF