Background: The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development.
View Article and Find Full Text PDFElastin, a fibrous extracellular matrix (ECM) protein, is the main component of elastic fibers that are involved in tissues' elasticity and resilience, enabling them to undergo reversible extensibility and to endure repetitive mechanical stress. After wounding, it is challenging to regenerate elastic fibers and biomaterials developed thus far have struggled to induce its biosynthesis. This review provides a comprehensive summary of elastic fibers synthesis at the cellular level and its implications for biomaterial formulation, with a particular focus on dermal substitutes.
View Article and Find Full Text PDFHeparan sulfate (HS) is a linear polysaccharide with high structural and functional diversity. Detection and localization of HS in tissues can be performed using single chain variable fragment (scFv) antibodies. Although several anti-HS antibodies recognizing different sulfation motifs have been identified, little is known about their interaction with HS.
View Article and Find Full Text PDFIntroduction: Sufficient cycle track width is important to prevent single-bicycle crashes and collisions between cyclists. The assumptions on which the minimum width is based in guidelines is founded on only a few studies. The aim of the present study is to investigate the relationship between cycle track width and lateral position of cyclists.
View Article and Find Full Text PDFAchieving regeneration in humans has been a long-standing goal of many researchers. Whereas amphibians like the axolotl () are capable of regenerating whole organs and even limbs, most mammals heal their wounds fibrotic scarring. Recently, the African spiny mouse ( sp.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage. Novel regenerative strategies are urgently awaited. Cultured mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental models of COPD, but differences between sources may impact on their potential use in therapeutic strategies in patients.
View Article and Find Full Text PDFUltrasound Obstet Gynecol
June 2023
Objectives: Fetal endoscopic tracheal occlusion (FETO) improves neonatal survival of fetuses with congenital diaphragmatic hernia (CDH). However, FETO also increases the risk of preterm prelabor rupture of membranes (PPROM) and preterm delivery (PTD), as fetal membrane defects after fetoscopy do not heal. To solve this issue, an advanced sealing plug for closing the membrane defect is being developed.
View Article and Find Full Text PDFThe process of wound healing is a tightly controlled cascade of events, where severe skin wounds are resolved via scar tissue. This fibrotic response may be diminished by applying anti-fibrotic factors to the wound, thereby stimulating regeneration over scarring. The development of tunable biomaterials that enable spatiotemporal control over the release of anti-fibrotics would greatly benefit wound healing.
View Article and Find Full Text PDFIn our aging society, the number of patients suffering from poorly healing bone defects increases. Bone morphogenetic proteins (BMPs) are used in the clinic to promote bone regeneration. However, poor control of BMP delivery and thus activity necessitates high doses, resulting in adverse effects and increased costs.
View Article and Find Full Text PDFIatrogenic preterm premature rupture of fetal membranes (iPPROM) after fetal surgery remains a strong trigger for premature birth. As fetal membrane defects do not heal spontaneously and amniotic fluid leakage and chorioamniotic membrane separation may occur, we developed a biocompatible, fetoscopically-applicable collagen plug with shape memory to prevent leakage. This plug expands directly upon employment and seals fetal membranes, hence preventing amniotic fluid leakage and potentially iPPROM.
View Article and Find Full Text PDFIn mucosa such as tonsil, antibody-producing plasmocytes (PCs) lie in sub-epithelium space, which is thought to provide a suitable environment for their survival. A proliferation inducing ligand (APRIL) is one key survival factor for PCs present in this area. According to staining, apical epithelial cells produced APRIL, and the secreted product had to migrate all through the stratified surface epithelium to reach basal cells.
View Article and Find Full Text PDFSmall molecules have gained considerable interest in regenerative medicine, as they can effectively modulate cell fates in a spatiotemporal controllable fashion. A continuous challenge in the field represents genuine mimicry or activation of growth factor signaling with small molecules. Here, we selected and profiled three compounds for their capacity to directly or indirectly activate endogenous FGF-2, VEGF, or SHH signaling events in the context of skin regeneration.
View Article and Find Full Text PDFThe extracellular matrix is a key component of tissues, yet it is underrepresented in proteomic datasets. Identification and evaluation of proteins in the extracellular matrix (ECM) has proved challenging due to the insolubility of many ECM proteins in traditional protein extraction buffers. Here we separate the decellularization and ECM extraction steps of several prominent methods for evaluation under real-world conditions.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2021
Mesenchymal stromal cells (MSCs) may provide crucial support in the regeneration of destructed alveolar tissue (emphysema) in chronic obstructive pulmonary disease (COPD). We hypothesized that lung-derived MSCs (LMSCs) from patients with emphysema are hampered in their repair capacity, either intrinsically or due to their interaction with the damaged microenvironment. LMSCs were isolated from the lung tissue of controls and patients with severe emphysema and characterized at baseline.
View Article and Find Full Text PDFHeparan sulfate (HS) is a linear polysaccharide with high structural diversity. Different HS epitopes have been detected and localized using single chain variable fragment (scFv) antibodies from a 'single pot' phage display library containing a randomized complementarity determining region of the heavy chain (CDR3). In this study, we created a new library containing anti-HS scFvs that all harbor a dp-38 heavy chain segment where the CDR3 region was engineered to contain the XBBXBX heparin binding consensus site (X = any amino acid, B = R, K or H).
View Article and Find Full Text PDFThe construction of scaffolds and subsequent incorporation of cells and biologics have been widely investigated to regenerate damaged tissues. Scaffolds act as a template to guide tissue formation, and their characteristics have a considerable impact on the regenerative process. Whereas many technologies exist to induce specific two-dimensional (2D) morphologies into biomaterials, the introduction of three-dimensional (3D) micromorphologies into individual pore walls of scaffolds produced from biological molecules such as collagen poses a challenge.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
August 2020
Current pharmacotherapy of chronic obstructive pulmonary disease (COPD) aims at reducing respiratory symptoms and exacerbation frequency. Effective therapies to reduce disease progression, however, are still lacking. Furthermore, COPD medications showed less favorable effects in emphysema than in other COPD phenotypes.
View Article and Find Full Text PDFPrimary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.
View Article and Find Full Text PDFType I collagen scaffolds for tissue reconstruction often have impaired mechanical characteristics such as limited stiffness and lack of strength. In this study, a new technique is presented to fine-tune stiffness and biodegradability of collagen scaffolds by treatment with concentrated salt solutions. Collagen scaffolds were prepared by a casting, freezing and lyophilization process.
View Article and Find Full Text PDFFor many years elastin was considered as the matrix component structurally required to provide tissue elasticity. However, the expanded knowledge on the regulation of connective tissue homeostasis has revealed that elastic fibers also represent a source of elastokines and are the target of a number of signaling pathways mainly involving the TGF-β/BMP axis. A better understanding of these complex regulatory networks may pave the way for targeted therapeutic strategies in a number of genetic as well as acquired diseases and for the development of new functionalized biomaterials.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) are known to play pivotal roles in physiological processes and pathological conditions. To study interactions of GAGs with proteins, immobilization of GAGs is often required. Current methodologies for immobilization involve modification of GAGs and/or surfaces, which can be time-consuming and may involve specialized equipment.
View Article and Find Full Text PDFIron-containing metallic implants are shown herein to mediate hydrolysis of glycosidic linkages. Using glucuronide prodrugs for broad-spectrum fluoroquinolone antibacterial agents, we capitalize on this behaviour and perform localized synthesis of antimicrobials which affords a significant zone of inhibition of bacterial growth around the metallic material.
View Article and Find Full Text PDFGlycosaminoglycans are important for cell signaling and therefore for proper embryonic development and adult homeostasis. Expressions of genes involved in proteoglycan/glycosaminoglycan (GAG) metabolism and of genes coding for growth factors known to bind GAGs were analyzed during skin development by microarray analysis and real time quantitative PCR. GAG related genes were organized in six categories based on their role in GAG homeostasis, (1) production of precursor molecules, (2) production of core proteins, (3) synthesis of the linkage region, (4) polymerization, (5) modification, and (6) degradation of the GAG chain.
View Article and Find Full Text PDFThe healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients.
View Article and Find Full Text PDF