Publications by authors named "DaSom Yang"

The elemental and isotopic (δCu and δZn) characteristics of 34 AFP samples from 5 paint manufacturers, the isotopic fractionation during the dissolution of AFPs by seawater, and the subsequent adsorption of isotopes onto coastal fine-grained sediments were investigated to identify potential indicators (metal ratios and isotopes). The δCu and δZn values for 34 AFPs could be divided into 2 groups regardless of the type of paint or manufacturer. Dissolution by seawater induced substantial fractionation but δCu and δZn approached the bulk AFP values when the leached fraction increased.

View Article and Find Full Text PDF

Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined.

View Article and Find Full Text PDF

A total of 222 surface sediments were collected in the Ulleung Basin, southwestern East/Japan Sea, from the coast to the basin and analyzed for grain size, total organic carbon, biogenic silica and major and trace elements. The metal concentrations of the surface sediments were highly spatially variable, and their distributions were grouped into four types by factor analysis: waste dumping materials (Cr, Cu, Zn, Sn, Sb, and Pb); detrital materials (Al, Fe, and Cs); suboxic diagenetic materials (Mn, Mo, Co, and Ni); and anoxic diagenetic materials (Cd and U). From core samples collected near the dumping site, approximately the top 10 cm was well mixed in the Pb profiles and highly enriched in the above metals related to dumping materials.

View Article and Find Full Text PDF

Recently, cancer immunotherapy has received attention as a viable solution for the treatment of refractory tumors. However, it still has clinical limitations in its treatment efficacy due to inter-patient tumor heterogeneity and immunosuppressive tumor microenvironment (TME). In this study, we demonstrated the triggering of anti-cancer immune responses by a combination of irreversible electroporation (IRE) and a stimulator of interferon genes (STING) agonist.

View Article and Find Full Text PDF

A treatment and volume reduction process for a spent uranium-antimony catalyst has been developed. Targeted removal, immobilization and disposal of the uranium component has been confirmed, thus eliminating the radiological hazard. However, significant concentrations of antimony ([Sb] ≥ 25-50 mg L) remain in effluent from the process, which require removal in compliance with Korean wastewater regulations.

View Article and Find Full Text PDF

In-stent restenosis (ISR) often occurs after applying drug eluting stents to the blood vessels suffering from atherosclerosis or thrombosis. For treatment of ISR, drug eluting balloons (DEB) have been developed to deliver anti-proliferative drugs to the lesions with ISR. However, there are still limitations of DEB such as low drug delivery efficiency and drug loss to blood flow.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring microchannels to enhance controlled drug delivery, aiming to achieve constant release rates that address the challenges of precise medication administration and minimize side effects.
  • The study presents drug delivery units with varying microchannel designs that can modulate drug release rates through geometric factors, demonstrating effective control over how and when drugs are released.
  • Utilizing a concept likened to electrical circuits, the team showcases the potential for systematic control in microfluidic systems, enabling better dosing accuracy and the possibility of responsive drug delivery.
View Article and Find Full Text PDF

The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding.

View Article and Find Full Text PDF

The development of functional scaffolds with improved osteogenic potential is important for successful bone formation and mineralization in bone tissue engineering. In this study, we developed a functional electrospun silk fibroin (SF) nanofibrous scaffold functionalized with two-stage hydroxyapatite (HAp) particles, using mussel adhesive-inspired polydopamine (PDA) chemistry. HAp particles were first incorporated into SF scaffolds during the electrospinning process, and then immobilized onto the electrospun SF nanofibrous scaffolds containing HAp via PDA-mediated adhesive chemistry.

View Article and Find Full Text PDF

Plexins (Plexs) are a large family of phylogenetically conserved guidance receptors that bind specifically to semaphorins (Semas), another large family of guidance molecules. In the Drosophila embryonic central nervous system (CNS), the secreted semaphorins Sema-2a and Sema-2b both act as ligands for PlexB, but mediate mutually independent and opposite functions (repulsive and attractive guidance, respectively). PlexB is also known to regulate motor axon guidance in the embryonic peripheral nervous system (PNS).

View Article and Find Full Text PDF

Plexins (Plexs) comprise a large family of cell surface receptors for semaphorins (Semas) that function as evolutionarily conserved guidance molecules. GTPase activating protein (GAP) activity for Ras family small GTPases has been implicated in plexin signaling cascades through its RasGAP domain. However, little is known about how Ras family GTPases are controlled in vivo by plexin signaling.

View Article and Find Full Text PDF

Three-dimensional (3D) thermal drawing at nanoscale as a novel rapid prototyping method was demonstrated to create multidirectional polymer nanoprobes for single cell analysis. This 3D drawing enables simple and rapid fabrication of polymeric nanostructures with high aspect ratio. The effect of thermal drawing parameters, such as drawing speeds, dipping depths, and contact duration on the final geometry of polymer nanostructures was investigated.

View Article and Find Full Text PDF