Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Symmetry lies at the heart of two-dimensional (2D) bioelectronics, determining material properties at the fundamental level. Breaking the symmetry allows emergent functionalities and effects. However, symmetry modulation in 2D bioelectronics and the resultant applications have been largely overlooked.
View Article and Find Full Text PDFChemotherapy-induced cardiotoxicity with subsequent heart failure (HF) is a major cause of morbidity and mortality in cancer survivors worldwide. Chemotherapy-induced HF is exceptionally challenging as it generally manifests in patients who are typically not eligible for left ventricular device implantation or heart transplantation. To explore alternative treatment strategies for cancer survivors suffering from chemotherapy-induced HF, we developed a minimally invasive infusible cardiac stromal cell secretomes adhesive (MISA) that could be delivered locally through an endoscope-guided intrapericardial injection.
View Article and Find Full Text PDFContinued emergence of SARS-CoV-2 variants of concern that are capable of escaping vaccine-induced immunity highlights the urgency of developing new COVID-19 therapeutics. An essential mechanism for SARS-CoV-2 infection begins with the viral spike protein binding to the human ACE2. Consequently, inhibiting this interaction becomes a highly promising therapeutic strategy against COVID-19.
View Article and Find Full Text PDFThe stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity.
View Article and Find Full Text PDFCritical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. We developed a nanovial technology for enrichment of millions of single cells based on EV secretion.
View Article and Find Full Text PDFThe circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine.
View Article and Find Full Text PDFUnlabelled: Extracellular vesicles (EVs) generated from mesenchymal stem cells (MSCs) play an essential role in modulating cell-cell communication and tissue regeneration. The clinical translation of EVs is constrained by the poor yield of EVs. Extrusion has recently become an effective technique for producing a large scale of nanovesicles (NVs).
View Article and Find Full Text PDFAims: Epicardium and epicardium-derived cells are critical players in myocardial fibrosis. Mesenchymal stem cell-derived extracellular vesicles (EVs) have been studied for cardiac repair to improve cardiac remodelling, but the actual mechanisms remain elusive. The aim of this study is to investigate the mechanisms of EV therapy for improving cardiac remodelling and develop a promising treatment addressing myocardial fibrosis.
View Article and Find Full Text PDFThe surge of fast-spreading SARS-CoV-2 mutated variants highlights the need for fast, broad-spectrum strategies to counteract viral infections. In this work, we report a physical barrier against SARS-CoV-2 infection based on an inhalable bioadhesive hydrogel, named spherical hydrogel inhalation for enhanced lung defence (SHIELD). Conveniently delivered via a dry powder inhaler, SHIELD particles form a dense hydrogel network that coats the airway, enhancing the diffusional barrier properties and restricting virus penetration.
View Article and Find Full Text PDFBackground: Mesenchymal stem cell (MSC)-derived exosomes are well recognized immunomodulating agents for cardiac repair, while the detailed mechanisms remain elusive. The Pericardial drainage pathway provides the heart with immunosurveillance and establishes a simplified model for studying the mechanisms underlying the immunomodulating effects of therapeutic exosomes.
Methods: Myocardial infarction (MI) models with and without pericardiectomy (corresponding to Tomy MI and NonTomy MI) were established to study the functions of pericardial drainage pathway in immune activation of cardiac-draining mediastinal lymph node (MLN).
Intramyocardial injection is a direct and efficient approach to deliver therapeutics to the heart. However, the injected volume must be very limited, and there is injury to the injection site and leakage issues during heart beating. Herein, we developed a detachable therapeutic microneedle (MN) patch, which is comprised of mesenchymal stromal cell-secreted factors (MSCF)-loaded poly(lactic--glycolic acid) nanoparticles (NP) in MN tips made of elastin-like polypeptide gel, with a resolvable non-cross-linked hyaluronic acid (HA) gel as the MN base.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2022
Cancer patients often face severe organ toxicity caused by chemotherapy. Among these, chemotherapy-induced hepatotoxicity and cardiotoxicity are the main causes of death of cancer patients. Chemotherapy-induced cardiotoxicity even creates a new discipline termed "cardio-oncology".
View Article and Find Full Text PDFRespiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers.
View Article and Find Full Text PDFThe first two mRNA vaccines against infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that were approved by regulators require a cold chain and were designed to elicit systemic immunity via intramuscular injection. Here we report the design and preclinical testing of an inhalable virus-like-particle as a COVID-19 vaccine that, after lyophilisation, is stable at room temperature for over three months. The vaccine consists of a recombinant SARS-CoV-2 receptor-binding domain (RBD) conjugated to lung-derived exosomes which, with respect to liposomes, enhance the retention of the RBD in both the mucus-lined respiratory airway and in lung parenchyma.
View Article and Find Full Text PDFJ Mol Cell Cardiol
August 2022
Coronary heart disease (CHD) has been the number one killer in the United States for decades and causes millions of deaths each year. Clinical treatment of heart ischemic injury relieves symptoms in the acute stage of CHD; however, patients with an infarcted heart muscle can develop heart failure (HF) due to chronic maladaptive remodeling. Regenerative therapy has been studied as a potential treatment option for myocardial infarction (MI) and HF.
View Article and Find Full Text PDFBackground: Osteoporosis is a chronic condition affecting patients' morbidity and mortality and represents a big socioeconomic burden. Because stem cells can proliferate and differentiate into bone-forming cells, stem cell therapy for osteoporosis has been widely studied. However, cells as a live drug face multiple challenges because of their instability during preservation and transportation.
View Article and Find Full Text PDFBackground: Cardiac repair after heart injury remains a big challenge and current drug delivery to the heart is suboptimal. Repeated dosing of therapeutics is difficult due to the invasive nature of such procedures.
Methods: We developed a fluid-driven heart pouch with a memory-shaped microfabricated lattice structure inspired by origami.
ACS Appl Mater Interfaces
December 2021
Mesenchymal stem cells (MSCs) repair injured tissues mainly through their paracrine actions. One of the important paracrine components of MSC secretomes is the extracellular vesicle (EV). The therapeutic potential of MSC-EVs has been established in various cardiac injury preclinical models.
View Article and Find Full Text PDFPrimary ovarian insufficiency (POI) normally occurs before age 40 and is associated with infertility. Hormone replacement therapy is often prescribed to treat vasomotor symptom, but it cannot restore ovarian function or fertility. Stem cell therapy has been studied for the treatment of POI.
View Article and Find Full Text PDFExosomes from mesenchymal stem cells have been largely studied as therapeutics to treat myocardial infarctions. However, exosomes injected for therapeutic purposes face a number of challenges, including competition from exosomes already in circulation, and the internalization/clearance by the mononuclear phagocyte system. In this study, we hybrid exosomes with platelet membranes to enhance their ability to target the injured heart and avoid being captured by macrophages.
View Article and Find Full Text PDF