Mucosal immunity typically involves innate and adaptive immune cells, while the cellular mechanism of teleost's intestinal immune cells that engages gut homeostasis against bacterial infection remains largely unknown. Taking advantage of the enteric fish pathogen (Edwardsiella piscicida) infection-induced intestinal inflammation in turbot (Scophthalmus maximus), we find that β-glucan training could mitigate the bacterial infection-induced intestinal inflammation. Through single-cell transcriptome profiling and cellular function analysis, we identify that E.
View Article and Find Full Text PDFNanosprings demonstrate promising mechanical characteristics, positioning them as pivotal components in a diverse array of potential nanoengineering applications. To unlock the full potential of these nanosprings, ongoing research is concentrated on emulating springs at the nanoscale in terms of both morphology and function. This review underscores recent advancements in the field and provides a comprehensive overview of the diverse methods employed for nanospring preparation.
View Article and Find Full Text PDFTrained immunity is classically characterized by long-term functional reprogramming of innate immune cells to combat infectious diseases. Infection-induced organ injury is a common clinical severity phenotype of sepsis. However, whether the induction of trained immunity plays a role in protecting septic organ injury remains largely unknown.
View Article and Find Full Text PDFThe cathode in lithium-selenium (Li-Se) batteries has garnered extensive attention owing to its superior specific capacity and enhanced conductivity compared to sulfur. Nonetheless, the adoption and advancement of Li-Se batteries face significant challenges due to selenium's low reactivity, substantial volume fluctuations, and the shuttle effect associated with polyselenides. Single-atom catalysts (SACs) are under the spotlight for their outstanding catalytic efficiency and optimal atomic utilization.
View Article and Find Full Text PDFLithium iron phosphate batteries, known for their durability, safety, and cost-efficiency, have become essential in new energy applications. However, their widespread use has highlighted the urgency of battery recycling. Inadequate management could lead to resource waste and environmental harm.
View Article and Find Full Text PDFAssembly construction is extensively employed in bridge construction due to its ability to accelerate construction and improve quality. To speed the recovery of bridges after major earthquakes, this study proposes an assembled connection for precast piers and footings based on assembly construction. The precast piers are connected to the footings using ultra-high-performance concrete (UHPC) post-cast cupped sockets.
View Article and Find Full Text PDFIn various domains spanning materials synthesis, chemical catalysis, life sciences, and energy materials, transmission electron microscopy (TEM) methods exert a profound influence. These methodologies enable the real-time observation and manipulation of gas-phase and liquid-phase reactions at the nanoscale, facilitating the exploration of pivotal reaction mechanisms. Fundamental research areas like crystal nucleation, growth, etching, and self-assembly have greatly benefited from these techniques.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2024
Poly(I:C) is known as an agonist of the TLR3 receptor which could prime inflammation and elicit the host immune response, which is widely applied as adjuvant or antivirus treatment. However, the negative effects of poly(I:C) on regulating immune response to protect the host from inflammatory diseases remain largely unknown. Here, we establish an in vivo model to pre-treat zebrafish larvae with poly(I:C) at 2 dpf, then challenge them with LPS at 6 dpf, and find that poly(I:C) training could significantly alleviate the LPS challenge-induced septic shock and inflammatory phenotypes.
View Article and Find Full Text PDFRecently, the diffractive deep neural network (DNN) has demonstrated the advantages to achieve large-scale computational tasks in terms of high speed, low power consumption, parallelism, and scalability. A typical DNN with cascaded diffractive elements is designed for monochromatic illumination. Here, we propose a framework to achieve the multi-wavelength DNN (MW-DNN) based on the method of weight coefficients.
View Article and Find Full Text PDFB lymphocytes engaged in humoral immunity play a critical role in combating pathogenic infections; however, the mechanisms of NK cells in regulating the responses of B cells remain largely unknown. In the present study, we established an Edwardsiella piscicida infection model in turbot (Scophthalmus maximus) and found that the production of IgM was decreased. Meanwhile, through establishing the head kidney-derived lymphocyte infection model, we revealed that the impairment of IgMhi B cells was associated with bacterial infection-induced perforin production.
View Article and Find Full Text PDFFish Shellfish Immunol
October 2023
T-helper 17 lymphocytes (Th17) are the most common inflammatory cells identified in mammals. However, the identification of Th17 cells and the clarification of their function in teleost fish remain largely unknown. In this study, we took advantage of the single-cell RNA sequencing-based immune cell atlas that was identified in turbot (Scophthalmus maximus), and revealed two chemokine-related genes, ccl20a.
View Article and Find Full Text PDFliquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles.
View Article and Find Full Text PDFDev Comp Immunol
December 2023
Pyroptosis, an inflammatory form of programmed cell death, is directly executed by gasdermin (GSDM) depending on its N-terminal pore-forming fragment-mediated membrane-disrupting, triggering intracellular contents release, which plays important roles in mammalian anti-infection and anti-tumor immune responses. However, whether pyroptosis engages in the regulation of tissue regeneration remains largely unknown. Here, utilizing Hydra vulgaris as the research model, we found that an HyCARD2-HyGSDME-mediated pyroptosis signalling is activated in both head and foot regenerated tips after amputation.
View Article and Find Full Text PDFAims: Pseudomonas plecoglossicida (P. plecoglossicida) is the causative agent of visceral granulomas disease in large yellow croaker (Larimichthys crocea) and it causes severe economic loss to its industry. Biofilm formation, related to intracellular cyclic bis (3'-5') diguanylic acid (c-di-GMP) levels, is essential for the lifestyle of P.
View Article and Find Full Text PDFInflammatory caspases sensing lipopolysaccharide (LPS) to drive gasdermin (GSDM)-mediated pyroptosis is an important immune response mechanism for anti-infection defense in mammals. In this work, we resolved an LPS-induced and GSDM-gated pyroptosis signaling cascade in Cnidarians. Initially, we identified a functional GSDM protein, HyGSDME, in , executing cytosolic LPS-induced pyroptosis in a caspase-dependent manner.
View Article and Find Full Text PDFSi-based rechargeable lithium-ion batteries (LIBs) have generated interest as silicon has remarkably high theoretical specific capacity. It is projected that LIBs will meet the increasing need for extensive energy storage systems, electric vehicles, and portable electronics with high energy densities. However, the Si-based LIB has a substantial problem due to the volume cycle variations brought on by Si, which result in severe capacity loss.
View Article and Find Full Text PDFBacterial disease is one of the important factors leading to economic losses in the turbot (Scophthalmus maximus) cultivation industry. T lymphocytes are major components of cellular immunity, whereas B lymphocytes produce immunoglobulins (Ig) that are key elements of humoral immune responses against infection. However, the genomic organization of genes encoding T-cell receptors (TCR) and immunoglobulin heavy chains (IgHs) in turbot remains largely unknown.
View Article and Find Full Text PDFFish Shellfish Immunol Rep
December 2021
Poly(I:C) is a kind of chemosynthetic double-stranded RNA (dsRNA) analogue which could act as TLR3 agonist and induce IFN production. It is widely applied in anti-virus treatment and immunoregulation, as well as vaccine adjuvant in farmed animals. However, whether poly(I:C) could activate innate immune response to defense against bacterial infection remains unclear.
View Article and Find Full Text PDFBlack shank disease caused by is one of the most important diseases in tobacco worldwide and can result in a devastating loss in tobacco cultivation. Many efforts have been carried out to identify the chromosome segment from containing a resistance locus carrying a gene named ; however, the gene has not been cloned, and knowledge of the potential mechanism of the gene in the resistant lines is limited. To further characterize the resistance mechanism of the gene, we first used the resistant line "RBST" and the susceptible cultivar "Honghuadajinyuan" (HD) to obtain the near-isogenic line RBS89 containing the gene from RBST.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is one of the leading causes of chronic kidney disease (CKD) worldwide, tubular injury is the driving force during the pathogenesis and progression of DN. Thus, we aim to utilize the connectivity map (CMap) with renal tubulointerstitial transcriptomic profiles of biopsy-proven DN to identify novel drugs for treating DN. We interrogated the CMap profile with tubulointerstitial transcriptomic data from renal biopsy-proven early- and late-stage DN patients to screen potential drugs for DN.
View Article and Find Full Text PDFTrained immunity defines long-term memory of innate immunity based on transcriptional, epigenetic, and metabolic modifications of myeloid cells, which are characterized by elevated proinflammatory responses toward homologous or heterologous secondary stimuli in mammals. However, the evidence of trained immunity-associated immune cells and its molecular mechanism in teleost fish remains largely unknown. In this study, we established a trained immunity activation model in turbot () and found that administration with β-glucan induces protection against a bacterial infection.
View Article and Find Full Text PDFNeutrophils can capture and kill pathogens by releasing neutrophils extracellular traps (NETs), which play critical roles in anti-microbial infection in mammals; however, the mechanisms involved in NETs formation and its role in anti-bacterial infection in teleost fish remains largely unknown. In this study, to explore the function of NETs in turbot, we established an in vitro bacterial infection model in head kidney derived neutrophils, and found that the haemolysin over-expressed Edwardsiella piscicida (ethA) could induce a robust phenotype of NETs, compared with that in wild type or ethA mutant (ethA -ΔethA) strains. Besides, the NETosis was mediated by ethA -induced pyroptosis, and arms the ability of bacterial killing in neutrophils of turbot.
View Article and Find Full Text PDF