Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and it lacks specific therapeutic targets and effective treatment protocols. By analyzing a proteomic TNBC dataset, we found significant upregulation of sideroflexin 1 (SFXN1) in tumor tissues. However, the precise function of SFXN1 in TNBC remains unclear.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Transcriptional dysregulation is a hallmark of cancer, and several transcriptional regulators have been demonstrated to contribute to cancer progression. In this study, we identified an upregulation of the transcriptional corepressor downregulator of transcription 1-associated protein 1 (DRAP1) in TNBC, which was closely associated with poor recurrence-free survival in patients with TNBC.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer with no targeted therapy. Spermatid perinuclear RNA binding protein (STRBP), a poorly characterized RNA-binding protein (RBP), has an essential role in normal spermatogenesis and sperm function, but whether and how its dysregulation contributing to cancer progression has not yet been explored. Here, we report that STRBP functions as a novel oncogene to drive TNBC progression.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most fatal subtype of breast cancer; however, effective treatment strategies for TNBC are lacking. Therefore, it is important to explore the mechanism of TNBC metastasis and identify its therapeutic targets. Dysregulation of ETHE1 leads to ethylmalonic encephalopathy in humans; however, the role of ETHE1 in TNBC remains elusive.
View Article and Find Full Text PDFClin Transl Med
March 2023
Background: Microtubule-targeing agents (MTAs), such as paclitaxel (PTX) and vincristine (VCR), kill cancer cells through activtion of the spindle assembly checkpoint (SAC) and induction of mitotic arrest, but the development of resistance poses significant clinical challenges.
Methods: Immunoblotting and RT-qPCR were used to investigate potential function and related mechanism of MORC2. Flow cytometry analyses were carried out to determine cell cycle distribution and apoptosis.
Triple-negative breast cancer (TNBC), although highly lethal, lacks validated therapeutic targets. Here, we report that U2 snRNP-associated SURP motif-containing protein (U2SURP), a poorly defined member of the serine/arginine rich protein family, was significantly upregulated in TNBC tissues, and its high expression was associated with poor prognosis of TNBC patients. MYC, a frequently amplified oncogene in TNBC tissues, enhanced U2SURP translation through an eIF3D (eukaryotic translation initiation factor 3 subunit D)-dependent mechanism, resulting in the accumulation of U2SURP in TNBC tissues.
View Article and Find Full Text PDFSUMOylation regulates a plethora of biological processes, and its inhibitors are currently under investigation in clinical trials as anticancer agents. Thus, identifying new targets with site-specific SUMOylation and defining their biological functions will not only provide new mechanistic insights into the SUMOylation signaling but also open an avenue for developing new strategy for cancer therapy. MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme with an emerging role in the DNA damage response (DDR), but its regulatory mechanism remains enigmatic.
View Article and Find Full Text PDFUnlabelled: Triple-negative breast cancer (TNBC) represents the most lethal subtype of breast cancer due to its aggressive clinical features and the lack of effective therapeutic targets. To identify novel approaches for targeting TNBC, we examined the role of protein phosphatases in TNBC progression and chemoresistance. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B), a poorly defined member of the protein phosphatase 1 regulatory subunits, was aberrantly upregulated in TNBC tissues and predicted poor prognosis.
View Article and Find Full Text PDFATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology.
View Article and Find Full Text PDFTreatment of triple-negative breast cancer (TNBC) remains challenging. Deciphering the orchestration of metabolic pathways in regulating ferroptosis will provide new insights into TNBC therapeutic strategies. Here, we integrated the multiomics data of our large TNBC cohort (n = 465) to develop the ferroptosis atlas.
View Article and Find Full Text PDFBackground: N-acetyltransferase 10 (NAT10), an abundant nucleolar protein with both lysine and RNA cytidine acetyltransferase activities, has been implicated in Hutchinson-Gilford progeria syndrome and human cancer. We and others recently demonstrated that NAT10 is translocated from the nucleolus to the nucleoplasm after DNA damage, but the underlying mechanism remains unexplored.
Methods: The NAT10 and PARP1 knockout (KO) cell lines were generated using CRISPR-Cas9 technology.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, which is characterized by high heterogeneity and metabolic dysregulation. Inositol monophosphatase 1(IMPA1) is critical for the metabolism of inositol, which has profound effects on gene expression and other biological processes. Here, we report for the first time that IMPA1 was upregulated in TNBC cell lines and tissues, and enhanced cell colony formation and proliferation in vitro and tumorigenicity in vivo.
View Article and Find Full Text PDFAims: MORC family CW-type zinc finger 2 (MORC2), a GHKL-type ATPase, is aberrantly upregulated in multiple types of human tumors with profound effects on cancer aggressiveness, therapeutic resistance, and clinical outcome, thus making it an attractive drug target for anticancer therapy. However, the antagonists of MORC2 have not yet been documented.
Methods And Results: We report that MORC2 is a relatively stable protein, and the N-terminal homodimerization but not ATP binding and hydrolysis is crucial for its stability through immunoblotting analysis and Quantitative real-time PCR.
Triple-negative breast cancer (TNBC) is a highly lethal disease due to aggressive clinical phenotype and the lack of validated therapeutic targets. Our recent quantitative proteomic analysis of 90 cases of TNBC tissues and 72 cases of matched adjacent normal tissues revealed that the expression levels of BPTF-associated protein of 18 KDa (BAP18), a component of the MLL1 and NURF chromatin complexes, were upregulated in TNBC tissues relative to normal tissues. However, the biological function and the underlying mechanism of BAP18 in TNBC progression remain unexplored.
View Article and Find Full Text PDFImmunotherapy has achieved limited success in patients with triple-negative breast cancer (TNBC), an aggressive disease with a poor prognosis. Commensal microbiota have been proven to colonize the mammary gland, but whether and how they modulate the tumor microenvironment remains elusive. We performed a multiomics analysis of a cohort of patients with TNBC (n = 360) and found genera under Clostridiales, and the related metabolite trimethylamine N-oxide (TMAO) was more abundant in tumors with an activated immune microenvironment.
View Article and Find Full Text PDFWe report a comprehensive proteomic study of a 90-case cohort of paired samples of triple-negative breast cancer (TNBC) in quantification, phosphorylation, and DNA-binding capacity. Four integrative subtypes (iP-1-4) are stratified on the basis of global proteome and phosphoproteome, each of which exhibits distinct molecular and pathway features. Scaffold and co-expression network analyses of three proteomic datasets, integrated with those from genome and transcriptome of the same cohort, reveal key pathways and master regulators that, characteristic of TNBC subtypes, play important regulatory roles within and between scaffold sub-structures and co-expression communities.
View Article and Find Full Text PDFMetabolic reprogramming is a hallmark of cancer. However, systematic characterizations of metabolites in triple-negative breast cancer (TNBC) are still lacking. Our study profiled the polar metabolome and lipidome in 330 TNBC samples and 149 paired normal breast tissues to construct a large metabolomic atlas of TNBC.
View Article and Find Full Text PDFMORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme involved in DNA damage response and gene transcription, and its dysregulation has been linked with Charcot-Marie-Tooth disease, neurodevelopmental disorder, and cancer. Despite its functional importance, how MORC2 is regulated remains enigmatic. Here, we report that MORC2 is O-GlcNAcylated by O-GlcNAc transferase (OGT) at threonine 556.
View Article and Find Full Text PDFBackground: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and lacks definite treatment targets. Tumor immune microenvironment (TIME) heterogeneity has a profound impact on the immunotherapy response. Tumors with non-inflamed TIME derive limited benefit from immunotherapy.
View Article and Find Full Text PDFPurpose: Regulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.
Experimental Design: Using the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration.
Autophagy
January 2021