Publications by authors named "Da-Zhong Xu"

The authors have previously shown that recombinant factor XIII (rFXIII) eliminates early manifestations of multiple-organ injury caused by experimental superior mesenteric artery occlusion or trauma-hemorrhagic shock. The aim of the present study was to test the hypothesis that rFXIII provides similar protective effect in experimental burn injury. Rats were randomly divided into five groups (eight animals per group): group 1: burn + placebo treatment; group 2: burn + rFXIII pretreatment; group 3: burn + rFXIII treatment; group 4: sham burn + placebo treatment, and group 5: sham burn + rFXIII treatment.

View Article and Find Full Text PDF

Background: Hemorrhagic shock is known to disrupt the gut barrier leading to end-organ dysfunction. The vagus nerve can inhibit detrimental immune responses that contribute to organ damage in hemorrhagic shock. Therefore, we explored whether stimulation of the vagus nerve can protect the gut and recover lung permeability in trauma-hemorrhagic shock (THS).

View Article and Find Full Text PDF

Background: Mechanical ventilation (MV) can lead to ventilator-induced lung injury secondary to trauma and associated increases in pulmonary inflammatory cytokines. There is controversy regarding the associated systemic inflammatory response. In this report, we demonstrate the effects of MV on systemic inflammation.

View Article and Find Full Text PDF

Interactions of toll-like receptors (TLRs) with nonmicrobial factors play a major role in the pathogenesis of early trauma-hemorrhagic shock (T/HS)-induced organ injury and inflammation. Thus, we tested the hypothesis that TLR4 mutant (TLR4 mut) mice would be more resistant to T/HS-induced gut injury and polymorphonuclear neutrophil (PMN) priming than their wild-type littermates and found that both were significantly reduced in the TLR4 mut mice. In addition, the in vivo and ex vivo PMN priming effect of T/HS intestinal lymph observed in the wild-type mice was abrogated in TLR4 mut mice as well the TRIF mut-deficient mice and partially attenuated in Myd88 mice, suggesting that TRIF activation played a more predominant role than MyD88 in T/HS lymph-induced PMN priming.

View Article and Find Full Text PDF

Background: We tested the hypothesis that testosterone depletion or blockade in male rats protects against trauma hemorrhagic shock-induced distant organ injury by limiting gut injury and subsequent production of biologically active mesenteric lymph.

Methods: Male, castrated male, or flutamide-treated rats (25 mg/kg subcutaneously after resuscitation) were subjected to a laparotomy (trauma), mesenteric lymph duct cannulation, and 90 minutes of shock (35 mm Hg) or trauma sham-shock. Mesenteric lymph was collected preshock, during shock, and postshock.

View Article and Find Full Text PDF

Background: Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.

Methods/principal Findings: The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury.

View Article and Find Full Text PDF

Objective: To test the hypothesis that gut-derived factors carried in trauma-hemorrhagic shock (T/HS) lymph are sufficient to induce red blood cells (RBC) injury, to investigate their potential mechanisms of action, and to define the time post-T/HS that these factors appear in the lymph.

Methods: Mesenteric lymph collected from T/HS or trauma-sham shock (T/SS) rats over different time periods was injected intravenously into male rats at a rate of 1 mL/h for 3 hours. RBC deformability was measured using laser-assisted ektacytometer to calculate the elongation index.

View Article and Find Full Text PDF

Background: Plasma factor XIII (FXIII) is responsible for stabilization of fibrin clot at the final stage of blood coagulation. Since FXIII has also been shown to modulate inflammation, endothelial permeability, as well as diminish multiple organ dysfunction (MOD) after gut ischemia-reperfusion injury, we hypothesized that FXIII would reduce MOD caused by trauma-hemorrhagic shock (THS).

Materials And Methods: Rats were subjected to a 90 min THS or trauma sham shock (TSS) and treated with either recombinant human FXIII A(2) subunit (rFXIII) or placebo immediately after resuscitation with shed blood or at the end of the TSS period.

View Article and Find Full Text PDF

Gut injury and loss of normal intestinal barrier function are key elements in the paradigm of gut-origin systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome (MODS). As hypoxia-inducible factor (HIF-1) is a critical determinant of the physiological and pathophysiological response to hypoxia and ischemia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Using partially HIF-1α-deficient mice in an isolated superior mesenteric artery occlusion (SMAO) intestinal ischemia reperfusion (I/R) injury model (45 min SMAO followed by 3 h of reperfusion), we showed a direct relationship between HIF-1 activation and intestinal I/R injury.

View Article and Find Full Text PDF

Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) are major causes of death in trauma patients. Gut inflammation and loss of gut barrier function as a consequence of splanchnic ischemia-reperfusion (I/R) have been implicated as the initial triggering events that contribute to the development of the systemic inflammatory response, ALI, and MODS. Since hypoxia-inducible factor (HIF-1) is a key regulator of the physiological and pathophysiological response to hypoxia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury.

View Article and Find Full Text PDF

Background: The intestinal mucus layer is an important but understudied component of the intestinal barrier. Consequently, we tested the hypothesis that the anatomic sites of loss of the mucus layer would directly correlate with sites of intestinal villous injury after trauma-hemorrhagic shock (T/HS) and may, therefore, serve as loci of gut barrier failure. Consequently, to investigate this hypothesis, we used Carnoy's fixative solution to prepare fixed tissue blocks where both the gut morphology and the mucus layer could be assessed on the same tissues slides.

View Article and Find Full Text PDF

There is substantial evidence that gut barrier failure is associated with distant organ injury and systemic inflammation. After major trauma or stress, the factors and mechanisms involved in gut injury are unknown. Our primary hypothesis is that loss of the intestinal mucus layer will result in injury of the normal gut that is exacerbated by the presence of luminal pancreatic proteases.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS) have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE) females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ER)alpha and ERbeta in modulating the protective response of female rats to T/HS-induced gut and lung injury.

View Article and Find Full Text PDF

Background: We tested the hypothesis that females are more resistant to trauma-hemorrhagic shock (T/HS)-induced gut injury than males, and this is related to better preservation of their intestinal mucus layer, which is influenced in turn by the estrus cycle stage at the time of injury.

Methods: Male, proestrus and diestrus female rats underwent a laparotomy (trauma) and 90 minutes of shock ( approximately 35 mm Hg). At 3 hours after reperfusion, terminal ileum was harvested and stained with Carnoy's Alcian Blue for mucus assessment, hematoxylin and eosin, and periodic acid schiff for villous and goblet cell morphology and injury.

View Article and Find Full Text PDF

Background: Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs.

View Article and Find Full Text PDF

Background: Decreased red blood cell (RBC) deformability and activation of neutrophils (polymorphonuclear leukocytes [PMN]) after trauma-hemorrhagic shock (T/HS) have been implicated in the development of multiple organ dysfunction. Experimentally, female animals seemed to be protected from the effects of T/HS, at least in part, because of elevated estrogen levels. Thus, we examined the relative role of estrogen receptor (ER)-alpha and -beta in this protective response.

View Article and Find Full Text PDF

Hemorrhage remains a common cause of death despite the recent advances in critical care, in part because conventional resuscitation fluids fail to prevent lethal inflammatory responses. Here, we analyzed whether ethyl pyruvate can provide a therapeutic anti-inflammatory potential to resuscitation fluids and prevent organ damage in porcine hemorrhage. Adult male Yorkshire swine underwent lethal hemorrhage with trauma and received no resuscitation treatment or resuscitation with Hextend alone, or supplemented with ethyl pyruvate.

View Article and Find Full Text PDF

Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. Recently, we have found that microRNA (miRNA) miR-145 is the most abundant miRNA in normal vascular walls and in freshly isolated VSMCs; however, the role of miR-145 in VSMC phenotypic modulation and vascular diseases is currently unknown. Here we find that miR-145 is selectively expressed in VSMCs of the vascular wall and its expression is significantly downregulated in the vascular walls with neointimal lesion formation and in cultured dedifferentiated VSMCs.

View Article and Find Full Text PDF

Objective: To test the hypothesis that trauma-hemorrhagic shock (T/HS)-induced changes in red blood cells (RBC) contribute to the reduction of blood flow in distant organs.

Design: Laboratory study.

Setting: Academic medical center laboratory.

View Article and Find Full Text PDF

Intestinal ischemia after trauma-hemorrhagic shock (T/HS) results in gut barrier dysfunction and the production/release of biologically active and tissue injurious factors in the mesenteric lymph, which, in turn, causes acute lung injury and a systemic inflammatory state. Since T/HS-induced lung injury is associated with pulmonary endothelial and epithelial cell programmed cell death (PCD) and was abrogated by mesenteric lymph duct ligation, we sought to investigate the cellular pathways involved. Compared with trauma-sham shock (T/SS) rats, a significant increase in caspase-3 and M30 expression was detected in the pulmonary epithelial cells undergoing PCD, whereas apoptosis-inducing factor (AIF), but not caspase-3, was detected in endothelial cells undergoing PCD.

View Article and Find Full Text PDF

Plasma factor XIII (FXIII) is responsible for stabilization of fibrin clot at the final stage of blood coagulation. Because FXIII has also been shown to modulate inflammation and endothelial permeability, we hypothesized that FXIII diminishes multiple organ dysfunction caused by gut I/R injury. A model of superior mesenteric artery occlusion (SMAO) was used to induce gut I/R injury.

View Article and Find Full Text PDF

The complement C5a pathway has been shown to be an important mediator of inflammation and tissue injury. To further understand the role of C5a receptor (C5aR) pathway in ischemia/reperfusion (I/R) injury, and to evaluate the potential of antagonizing C5aR to protect from I/R injury, we tested the effect of eliminating C5aR using C5aR knockout (KO) mice and their wild-type (WT) littermates in a superior mesenteric artery occlusion (SMAO) intestinal I/R injury model. C5aR KO and WT mice were subjected to SMAO or sham for 45 min.

View Article and Find Full Text PDF

The objective of this study was to test the hypotheses that the better resistance of proestrus female than male rats to trauma-hemorrhagic shock (T/HS)-induced gut and other organ injury, and it is associated with better preservation of central hemodynamics and organ blood flow including blood flow to the intestine. Male and female proestrus rats were subjected to T/HS (laparotomy and 90 minutes of shock at a mean arterial blood pressure of 35-40 mm Hg) or trauma sham-shock after that cardiac index, systemic vascular resistance, and organ blood flow was measured 15 minutes before the end of the shock period and at 15 minutes, 60 minutes, and 180 minutes after volume resuscitation. The hemodynamic response to T/HS was better preserved during the shock period in the female than male rats and this was manifest as better maintenance of central hemodynamics (cardiac output and systemic vascular resistance) and intestinal as well as other organ microcirculatory blood flow.

View Article and Find Full Text PDF

Background: Recognition that resuscitation with Ringers lactate (RL) potentiates trauma-hemorrhagic shock (T/HS)-induced organ injury and systemic inflammation has led to a search for improved initial fluid resuscitation regimens. However, one relatively neglected component in the search for new and novel resuscitation strategies is a determination of what fluid resuscitation therapy (i.e.

View Article and Find Full Text PDF

Trauma and hemorrhagic shock (T/HS) induce a systemic inflammatory response syndrome (SIRS). Neutrophils (polymorphonuclear leukocytes [PMN]) and other cells involved in acute lung injury (ALI) are activated by Ca2+ entry. Thus, inhibiting Ca2+ entry might attenuate post-traumatic lung injury.

View Article and Find Full Text PDF