Serum used widely in mammalian cell culture is also a potential source of bacterial, mycoplasmal and viral contaminations. In addition, the complex biological components in serum make harder the subsequent product recovery process. High cost, high batch variation and potential source limitation are among the other shortcomings.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
September 2004
Without serum to provide adherent factors, CHO-dhfr- cells grow in suspension when cultured in serum-free medium. Although this offers advantages in some applications, in most production systems adherent cell growth is preferable. Gene transfection, clonal selection and amplification can be easier for adherent cells; the density of immobilized cells is often higher than those in suspension culture, which results in a higher protein productivity; washout of cells by perfused medium during continuous fermentation can be avoided; for high-throughput microplate assays, adherent cells are preferred to facilitate medium changes and cell washing.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
May 2003
Mammalian cells are prone to apoptosis when cultured in large scale for production of biopharmaceuticals. And this will reduce production duration and result in high cost of production. Apoptosis is triggered by various factors, and delicately regulated by a set of genes.
View Article and Find Full Text PDFChinese hamster ovary cells (CHO) are preferable to prokaryotic, yeast or insect cells as hosts for biopharmaceutical production due to the products are more similar to their natural conformation. However, CHO cells confront tremendous difficulties when cultured in large scale such as mal-adaptation to serum-free medium, apoptosis and over-growth without limitation. So in addition to optimizing CHO system in respect of medium, environment and expression vector, modification of CHO cells themselves has drawn more and more attention.
View Article and Find Full Text PDF