Background: Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in human brains, playing a role in the pathogenesis of various psychiatric disorders. Current methods have some non-neglectable shortcomings and noninvasive and accurate detection of GABA in human brains is long-term challenge.
Purpose: To develop a pulse sequence capable of selectively detecting and quantifying the H signal of GABA in human brains based on optimal controlled spin singlet order.
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have made great successes in clinical diagnosis, medical research, and neurological science. MRI provides high resolution anatomical images of tissues/organs, and MRS provides information of the functional molecules related to a specific tissue/organ. However, it is difficult for classic MRI/MRS to selectively image/probe a specific metabolite molecule other than the water or fat in tissues/organs.
View Article and Find Full Text PDFPurpose: The signals of glutamate (Glu) and glutamine (Gln) are often significantly overlapped in routine H-MR spectra of human brain in vivo. Selectively probing the signals of Glu and Gln in vivo is very important for the study of the metabolisms in which Glu and Gln are involved.
Methods: The Glu-/Gln- targeted pulse sequences are developed to selectively probe the signals of Glu and Gln.
Selectively probing specific molecules in complex mixtures with nuclear magnetic resonance promises new insights into molecular structures or molecular interaction. Such a study often can be further facilitated when two or more objects in chemical moieties of interest can be precisely targeted. Herein, we proposed a novel method to implement the multiple-targeting signal selection by optimal control of the spin singlets of two or more targeted spin systems from one or more molecules.
View Article and Find Full Text PDFMost current approaches applied for the essential identification of adulteration in edible vegetable oils are of limited practical benefit because they require long analysis times, professional training, and costly instrumentation. The present work addresses this issue by developing a novel simple, accurate, and rapid identification approach based on the magnetic resonance relaxation fingerprints obtained from low-field nuclear magnetic resonance spectroscopy measurements of edible vegetable oils. The relaxation fingerprints obtained for six types of edible vegetable oil, including flaxseed oil, olive oil, soybean oil, corn oil, peanut oil, and sunflower oil, are demonstrated to have sufficiently unique characteristics to enable the identification of the individual types of oil in a sample.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2014
A new category of crystalline polymer electrolyte prepared by the supramolecular self-assembly of polyethylene oxide (PEO), α-cyclodextrin (α-CD), and LiAsF6 is reported. The polymer electrolyte consists of the nanochannels formed by α-CDs in which the PEO/Li(+) complexes are confined. The nanochannels formed by α-CD provide the pathway for the directional motion of Li(+) ions and at the same time prevent the access of the anions by size exclusion, resulting in good separation of the Li(+) ions and the anions.
View Article and Find Full Text PDF