J Phys Condens Matter
July 2020
We reexamine how quantum density fluctuations in condensates of ultra-cold Fermi gases lead to fluctuations in phonon times-of-flight, an effect that increases as density is reduced. We suggest that these effects should be measurable in pancake-like (two-dimensional) condensates on their release from their confining optical traps, providing their initial (width/thickness) aspect ratio is suitably large.
View Article and Find Full Text PDFWe develop a new formalism for the description of the condensates of cold Fermi atoms whose speed of sound can be tuned with the aid of a narrow Feshbach resonance. We use this to look for spontaneous phonon creation that mimics spontaneous particle creation in curved space-time in Friedmann-Robertson-Walker and other model universes.
View Article and Find Full Text PDFWe apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology.
View Article and Find Full Text PDFWe derive generalized two-superfluid continuity equations for the BEC-BCS crossover in the presence of a Feshbach resonance at T=0. In addition, we calculate the velocity of sound throughout both BCS and Bose-Einstein condensation (BEC) regimes.
View Article and Find Full Text PDF