Micromachines (Basel)
July 2021
For the first time, a novel germanium (Ge) bi-stable resistor (biristor) with a vertical pillar structure was implemented on a bulk substrate. The basic structure of the Ge pillar-typed biristor is a p-n-p bipolar junction transistor (BJT) with an open base (floating), which is equivalent to a gateless p-channel metal oxide semiconductor field-effect transistor (MOSFET). In the pillar formation, we adopted an amorphous carbon layer to protect the Ge surface from both physical and chemical damage by subsequent processes.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFA frequency reconfigurable dipole antenna based on a silicon radiator is presented. The silicon radiator is activated with the aid of highly dense solid-state plasma by injecting carriers into the intrinsic region of p-i-n diodes. The fabrication and design guideline of the reconfigurable dipole antenna with this plasma radiator are described.
View Article and Find Full Text PDFMicrowave-induced thermal curing is demonstrated to improve the reliability and to prolong the lifetime of chips containing nanoscale electron devices. A film containing graphite powder with high microwave absorbing efficiency was fabricated at low cost. The film is flexible, bendable, foldable, and attachable to a chip.
View Article and Find Full Text PDFThis paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.
View Article and Find Full Text PDF