Tunable ultrasonic focusing holds great significance in both medicine and engineering. Recent advancements in metalenses have introduced approaches for tunable acoustic focusing, but their complex configurations and limited tuning range remain challenges. Here, acoustic Moiré metalenses (AMMs) are proposed to achieve continuously tunable ultrasonic focusing in water.
View Article and Find Full Text PDFCore-shell nanostructures are widely used, and their photoacoustic (PA) properties are important for applications. However, the relations between their structural parameters and the properties of the PA spectrum are indirect because most theoretical models have been reported for them in the time domain. In this study, we develop a complete model in the frequency domain to analyze the PA response of core-shell particles.
View Article and Find Full Text PDFDrug delivery by acoustic waves is a crucial technology for targeted therapy. Recently, a three-layered drug micro-particle was proposed and fabricated, the second shell of which greatly improves both the encapsulation of the drug and the flexibility in its release rate. In this work, the acoustic radiation force (ARF) of an acoustic focused Gaussian beam on a three-layered particle comprising an inner drug core (D), a middle layer of poly(lactide-co-glycolide) (PLGA), and an outer chitosan shell (CS) is investigated.
View Article and Find Full Text PDFAcoustic bottle-beams have been realized by acoustic metasurfaces (AMs) composed of space-coiling subunits. By manipulating the transmitted acoustical phase, the special AM can generate two intersecting accelerating beams along the designed convex trajectories, forming the acoustic bottle-beam. The transmitted acoustic bottle-beams are investigated theoretically and demonstrated numerically.
View Article and Find Full Text PDFAn acoustic anisotropic lens (AAL) based on large mass-density modulation depth (LMMD) medium is proposed for subwavelength imaging. The underlying mechanism for converting evanescent components into propagating waves is attributed to the strong suppression of the transverse velocity field component in LMMD medium. In addition, the proposed lens can operate in a broadband manner, which is more flexible in practical applications.
View Article and Find Full Text PDFA rapidly modulated stratified medium with a large mass density modulation depth (LMMD) is proposed to achieve non-diffraction propagation (NDP) of acoustic waves. It is found that the NDP in LMMD medium is independent of the incident angle and can be operated in a broad-band manner. Such an NDP is robust and is unhampered by medium losses.
View Article and Find Full Text PDFA three-layered Ag-low-permittivity (LP)-high-permittivity (HP) nanoshell is proposed as a plausible meta-atom for building the three-dimensional isotropic negative refractive index metamaterials (NIMs). The overlap between the electric and magnetic responses of Ag-LP-HP nanoshell can be realized by designing the geometry of the particle, which can lead to the negative electric and magnetic polarizabilities. Then, the negative refractive index is found in the random arrangement of Ag-LP-HP nanoshells.
View Article and Find Full Text PDFThe influences of the symmetry-breaking on the plasmon resonance couplings in the isolated gold nanotube and the gold nanotube dimer have been investigated by means of the finite element method. It is found that the core offset of gold nanotubes leads to the red-shifts of the low energy modes and the enhanced near-field on the thin shell side of the symmetry-broken gold nanotube (SBGNT). In the weak coupling model of the SBGNT dimer, the interference of the bonding octupole mode of the dimer with the dipole modes causes a strong Fano-like resonance in scattering spectrum.
View Article and Find Full Text PDFThe influences of the anisotropic permittivity and permeability in inner core on the Fano resonance have been investigated in Ag nanoshell by means of Mie scattering theory. The decreased inner core radius can enhance the coupling between superradiant and subradiant dipole modes and hence a distinct Fano profile. With increasing the tangential permittivity or permeability of inner core, the Fano resonance shows a redshift and the magnitude of Fano profile increases.
View Article and Find Full Text PDF