Sulfur-rich copolymers, characterized by high sulfur contents and dynamic disulfide bonds, show significant promise as sustainable alternatives to conventional carbon-based plastics. Since the advent of inverse vulcanization in 2013, numerous synthesis strategies have emerged - ranging from thermopolymerization and photoinduced polymerization to the use of crosslinkers such as mercaptans, episulfides, benzoxazines, and cyclic disulfides. These advancements coupled with the rising demand for degradable plastics have driven research for diverse applications, including optical windows, metal uptake, and adhesives.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2025
To gain a deeper understanding of the sequential multistep excited-state structural evolutions of N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) luminophores, we strategically freeze distinct conformations by crystallization, allowing to capture the progressive conformational transformations within a DPAC-based framework by utilizing single-crystal X-ray diffractometry. Our focus lies in the innovative modification of DPAC via the synthesis of cyano (CN)-substituted derivatives DPAC-nCN (n=1-4, with n indicating the number of CN groups). The incorporation of electron-withdrawing CN groups modulates electron delocalization and lowers energy barriers, facilitating access to conformational polymorphism within the crystals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Photoacid generators (PAGs) are invaluable molecular tools that exhibited tremendous potential in emerging interdisciplinary researches of life-science, nanotechnology and smart materials. However, current PAGs are primarily mono-functional in terms of acid generation and rely on UV/deep-blue light excitation, posing a fundamental hurdle to their broader adoption. Developing cooperatively functioned PAGs with long-wavelength light responsiveness presents a formidable challenge due to the absence of suitable molecular scaffolds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2025
Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.
View Article and Find Full Text PDFThe packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.
View Article and Find Full Text PDFHigh-performance polymers based on dynamic chemistry have been widely explored for multi-field advanced applications. However, noncovalent sacrificial bond-mediated energy dissipation mechanism causes a trade-off between mechanical toughness and resilience. Herein, we achieved the synchronous boost of seemingly conflicting material properties including mechanical robustness, toughness and elasticity via the incorporation of mechanical chemistry into traditional semi-crystalline networks.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2025
Constructing circularly polarized luminescence (CPL) materials that exhibit dynamic handedness inversion and emissive color modulation for multimodal information encryption presents both a significant challenge and a compelling opportunity. Here, we have developed a pyridinethiazole acrylonitrile-cholesterol derivative (Z-PTC) that exhibits wavelength-dependent photoisomerization and photocyclization, enabling dynamic handedness inversion and emissive color modulation in supramolecular assemblies with decent CPL activity. Coordination with Ag ions form the Z-PTC Ag supramolecular polymer (SP), which assembles into nanotubes displaying enhanced positive yellow-green CPL.
View Article and Find Full Text PDFA non-equilibrium cucurbit[7]uril-mediated supramolecular host-guest system is fabricated by using urea/urease to control aqueous solution pH on time dimension, showing transient assembly behavior and time-dependent fluorescence. The dynamic assembly can be also achieved in hydrogel network, resulting in a time-dependent fluorescent hydrogel for information encryption.
View Article and Find Full Text PDFDue to the general incompleteness of photochemical reactions, the photostationary structure in traditional photo-controlled host-guest self-assembly transfer is usually disordered or irregular. This fact readily affects the photoregulation or improvement of related material properties. Herein, a photoexcitation-induced aggregation molecule, hydroxyl hexa(thioaryl)benzene (HB), was grafted into β-cyclodextrin to form a host-guest system.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Facile fabrication, low material complexity and closed-loop recycling are essential for polymer plastics to alter their linear product economy towards a cradle-to-cradle one. Covalent adaptable networks (CANs) are one way to achieve that, which intrinsically exhibit decent mechanical properties like the thermosets but could also be easily recycled like the thermoplastics. In this work, we introduce rigid ester structural motifs into dynamic poly(disulfide)s to form a series of dual polymer networks.
View Article and Find Full Text PDFSemi-crystalline polymers (SCPs) with anisotropic amorphous and crystalline domains as the basic skeleton are ubiquitous from natural products to synthetic polymers. The combination of chemically incompatible hard and soft phases contributes to unique thermal and mechanical properties. The further introduction of supramolecular interactions as noncovalently interacting crystal phases and soft dynamic crosslinking sites can synergize with covalent polymer chains, thereby enabling effective energy dissipation and dynamic rearrangement in hierarchical superstructures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2024
Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds.
View Article and Find Full Text PDFCircularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high g values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a g value of 2.
View Article and Find Full Text PDFClassic approaches to integrate flexible capacitive sensor performance are to on-demand microstructuring dielectric layers and to adjust dielectric material compositions via the introduction of insoluble carbon additives (to increase sensitivity) or dynamic interactions (to achieve self-healing). However, the sensor's enhanced performances often come with increased material complexity, discouraging its circular economy. Herein, a new intrinsic self-healable, closed-loop recyclable dielectric layer material, a fully nature-derived dynamic covalent poly(disulfide) decorated with rich H bonding and metal-catechol complexations is introduced.
View Article and Find Full Text PDFConverting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e.
View Article and Find Full Text PDFSimultaneously achieving room-temperature phosphorescence (RTP) and multiple-stimuli responsiveness in a single-component system is of significance but remains challenging. Crystallization has been recognized to be a workable strategy to fulfill the above task. However, how the molecular packing mode affects the intersystem crossing and RTP lifetime concurrently remains unclear so far.
View Article and Find Full Text PDFThe incorporation of mechanically interlocked structures into polymer backbones has been shown to confer remarkable functionalities to materials. In this work, a [c2]daisy chain unit based on dibenzo-24-crown-8 is covalently embedded into the backbone of a polymer network, resulting in a synthetic material possessing remarkable shape-memory properties under thermal control. By decoupling the molecular structure into three control groups, we demonstrate the essential role of the [c2]daisy chain crosslinks in driving the shape memory function.
View Article and Find Full Text PDFThe viscosity distribution of micellar interiors from the very center to the outer surface is dramatically varied, which has been distinguished in theoretical models, yet it remains highly challenging to quantify this issue experimentally. Herein, a series of fluorophore-substituted surfactants ( = 3, 5, 7, 9, 11, 13, and 15) are developed by functionalizing the different alkyl-trimethylammonium bromides with the butterfly motion-based viscosity sensor, ,'-diphenyl-dihydrodibenzo[,]phenazine (). The immersion depth of units of in cetrimonium bromide () micelles depends on the alkyl chain lengths .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
Introducing photo-responsive molecules offers an attractive approach for remote and selective control and dynamic manipulation of material properties. However, it remains highly challenging how to use a minimal amount of photo-responsive units to optically modulate materials that are inherently inert to light irradiation. Here we show the application of a light-driven rotary molecular motor as a "motorized photo-modulator" to endow a typical H-bond-based gel system with the ability to respond to light irradiation and create a reversible sol-gel transition.
View Article and Find Full Text PDFAIE-active photosensitizers (PSs) are promising for antitumor therapy due to their advantages of aggregation-promoted photosensitizing properties and outstanding imaging ability. High singlet-oxygen (O) yield, near-infrared (NIR) emission, and organelle specificity are vital parameters to PSs for biomedical applications. Herein, three AIE-active PSs with D-π-A structures are rationally designed to realize efficient O generation, by reducing the electron-hole distribution overlap, enlarging the difference on the electron-cloud distribution at the HOMO and LUMO, and decreasing the Δ.
View Article and Find Full Text PDFWe demonstrate that a single polycyclic π-scaffold can undergo sequential multistep excited-state structural evolution along the bent, planar, and twisted conformers, which coexist to produce intrinsic multiple fluorescence emissions in room-temperature solution. By installing a methyl or trifluoromethyl group on the ortho-site of N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC), the enhanced steric effects change the fluorescence emission of DPAC from a dominant red band to well-resolved triple bands. The ultra-broadband triple emissions of ortho-substituted DPACs range from ≈350 to ≈850 nm, which is unprecedented for small fluorophores with molecular weight of <500.
View Article and Find Full Text PDFThe dynamic control of circularly polarized luminescence (CPL) has far-reaching significance in optoelectronics, information storage, and data encryption. Herein, we reported the reversible inversion of CPL in a coassembly supramolecular system consisting of chiral molecules L4, which contain two positively charged viologen units, and achiral ionic surfactant sodium dodecyl sulfate (SDS) by introducing achiral sulforhodamine B (SRB) dye molecules. The chirality of CPL in the coassemblies can be efficiently regulated and inverted by simply adjusting the amount of SRB.
View Article and Find Full Text PDFDeveloping molecular approaches to the creation of robust and water-resistant adhesive materials promotes a fundamental understanding of interfacial adhesion mechanisms as well as future applications of biomedical adhesive materials. Here, we present a simple and robust strategy that combines natural thioctic acid and mussel-inspired iron-catechol complexes to enable ultra-strong adhesive materials that can be used underwater and simultaneously exhibit unprecedentedly high adhesion strength on diverse surfaces. Our experimental results show that the robust crosslinking interaction of the iron-catechol complexes, as well as high-density hydrogen bonding, are responsible for the ultra-high interfacial adhesion strength.
View Article and Find Full Text PDF